

Microsoft Azure: Enterprise
Application Development

Straight talking advice on how to design and build
enterprise applications for the cloud

Richard J. Dudley

Nathan A. Duchene

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

Microsoft Azure: Enterprise Application Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1231110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-98-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors
Richard J. Dudley

Nathan A. Duchene

Reviewers
Ruslan Konviser

Anton Staykov

Acquisition Editor
James Lumsden

Development Editor
Dhwani Devater

Technical Editor
Gaurav Datar

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Rebecca Sawant

Proofreader
Ting Baker

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Richard J. Dudley has experience in the field of computers, going all way back
to PC-DOS 1.1 (of which the original box still sits in a closet), with 128K and dual
floppies. He began programming in GW-BASIC, and has used nearly every BASIC
variant along the way. He was very active in the Louisville BBS community in
the 1980s.

Richard holds a BS in Environmental Science from Allegheny College, and an MS in
Biological Sciences from The University of Alabama. He developed his programming
skills as a way to record and analyze his data, and later collaborate with other labs
as the World Wide Web slowly came into being. Eventually, the dot com boom was
too tempting, and Rich left science to be become a full-time developer. Rich spent
10 years as an Enterprise Developer, building and supporting everything from
consumer websites to several mission-critical systems integrations, to Crystal-and
SSRS-based BI tools, to a number of internal line-of-business applications.

Rich is now a Technology Evangelist for ComponentOne, where his job is to support
the user community by working with all the latest Microsoft technologies.

Rich's past employers include The University of Alabama-Birmingham
(Research Assistant V), The University of Pittsburgh (Research Specialist II),
Spang & Co. (e-Commerce Developer), and Armada Supply Chain Solutions
(Senior Application Developer).

Acknowledgement

You always see an author thank his or her family, and until you write a book, you
can't really understand why. Writing a book is time consuming—you spend a lot
of time looking out of a window watching the seasons pass by, wishing you were
kayaking on the nearby lake, or going for a bike ride, or anything other than being
inside staring at a glowing rectangle hoping the words start flowing soon. We've
made almost one complete turn around the sun since we started this book, and it is
the culmination of a great deal of work.

So, at the risk of sounding clichéd, I have to thank my wife Kathy, and daughter
Anna Claire, who can now have her daddy back.

The impetus to write a technical book doesn't come from money—there's a small
advance, and if you're really lucky, maybe some royalties. Fame? Not really—if
you're popular, maybe a dozen people will tweet about you. The urge to write a book
comes from something more fundamental, something our parents instilled in us and
we try and instill in our children—sharing. Share your experiences, share what you
know, as doing so builds a stronger community. I hope you find what we've done to
be useful.

Nathan A. Duchene has been developing in the .NET Framework since 2005,
starting with ASP.NET 2.0. He found a need for a website with the features available
in ASP.NET, and with some guidance from Richard J. Dudley, quickly developed
and published his web application to the world. After experiencing the ease and
flexibility offered by .NET to developers, he decided to learn more features, best
practices, and tricks to enhance his web application, build new web applications,
write and maintain some console applications, and much more.

In 2008, Nathan and Richard developed and entered a web application into a coding
contest, which was voted by the community as the second best of all submissions,
losing only by a few votes. Winning an MSDN Premium subscription, it allowed
Nathan to play with a number of systems and tools, strengthening his knowledge
in the development world.

Nathan, along with Richard, was part of a group that gave a presentation on
Silverlight 2 in the Windows Azure cloud in 2009. Both technologies were in beta
or pre-beta phases, which caused unexpected issues. Even though the application
would not work, the talk was a great success in explaining Windows Azure and
Silverlight 2 before they were released to the world.

Nathan is currently an Application Developer for a supply chain solutions company
based in Pittsburgh, PA. Along with some .NET development, he also develops and
administers solutions using Microsoft SQL Server 2000/2005/2008, Microsoft Biztalk
Server 2009, and Microsoft Office SharePoint Server 2007.

This is Nathan's first book and has been a tremendous experience from front to
back. After being given the opportunity to pass on some knowledge back to the
community, he hopes to have the opportunity in the future to write more books
for the community. After observing how quickly technology changes, he feels it's
important to release up-to-date information for others to make use of. While Nathan
and Richard had to re-write numerous chapters along the way to include new
features or changes to existing features, the experience was amazing.

Acknowledgement

I'd like to thank my family and friends for all the support throughout the book
process. Not only did they support me, but the encouragement helped me through
some rough times when I thought it to be a difficult task to be physically able to
write the book with everything else going on at the time. Without my friends and
family, I couldn't have made it through this journey. Most importantly, I'd also like
to thank my co-author, Richard Dudley. He has been a colleague, a friend, and a
mentor over the last eight years. He's shown me opportunities that no one else has
and I'm really happy to have him around as a partner in everything we've done.
Richard's enthusiasm to help me flourish personally and professionally has had the
most meaning in my life recently, and I look forward to working side-by-side with
him over the next decades.

About the Reviewer

Anton Staykov has over nine years of solid experience in developing dynamic
software solutions (corporate web portals, rich media sites, e-commerce sites,
internal software solutions covering specific business needs), using the latest
technologies, including Microsoft .NET, MS SQL Server, PHP, MySQL. Currently he
is Technical Evangelist for a world leader in the field of User Interface Development
Tools and User Experience services. He is User Group Lead for Windows Azure User
Group Bulgaria. Anton is an Engineer in Telecommunications and Master of Science
in Internet Software Technologies.

You can visit his blog at: http://blogs.staykov.net/.

Table of Contents
Preface 1
Chapter 1: Introduction to Cloud Computing 7

What is an enterprise application? 7
What is cloud computing? 8
Some benefits of cloud computing 9
Some downsides of cloud computing 10
Cloud computing infrastructure 11
Cloudy skies ahead 12
Is cloud computing "enterprisey" enough? 13
Summary 14

Chapter 2: The Nickel Tour of Azure 15
Explaining Azure to the managers 15
Windows Azure 17

Compute service 17
Storage service 18

Blob Storage 18
Table Storage 19
Queue Storage 19

Azure Fabric Agent and Controller 20
SQL Azure 20
Windows Azure platform: AppFabric 21
Codename Dallas 22
Development Fabric 22
Considerations for the ASP.NET developer 22
How are Azure costs calculated? 23

Calculating Windows Azure pricing 23

Table of Contents

[ii]

Calculating SQL Azure pricing 24
Calculating AppFabric pricing 24

Summary 25
Chapter 3: Setting Up for Development 27

Downloading the tools 27
Configuring the local machine for development 27
Installing Windows Azure tools and SDK 31
Summary 34

Chapter 4: Designing our Sample Application 35
Project design 35
Integrating application with cloud features 37
Creating an Azure account 39
Summary 40

Chapter 5: Introduction to SQL Azure 41
Overview of SQL Azure 41

Manageability 43
Managing SQL Azure 43

High availability 45
Scalability 46
Relational data model 46
Familiar development model 46
What's the same in SQL Azure? 47

Data types 47
Database objects 47
Fully supported T-SQL commands 48
Partially supported T-SQL commands 49
SQL Server built-in functions 49
Multiple active result sets 50

What's different in SQL Azure? 50
Number of databases 51
Database objects 51
Service Broker, SQL Browser, and DTC 51
T-SQL commands 51
System functions 52
Data synchronization 52

Security 53
Development considerations 54

Managing maximum size 54
Management tools 55

SQL Azure portal 55
SSMS 2008 R2 55
Project Houston 55

Table of Contents

[iii]

Access 2010 56
Managing databases, logins, and roles in SQL Azure 56
Migrating schema and data 57

Manually scripting objects and data 57
SQL Azure Migration Wizard 58
SQL Server Integration Services (SSIS) 59

SQL Server Import and Export Wizard 59
Creating packages from scratch 61
DAC Packs 61

BCP 62
The Jupiter Motor's ERP system database and
the Dealer Orders database 62

SQL Azure portal 64
Creating our database 65
Summary 76

Chapter 6: Azure Blob Storage 77
Blobs in the Azure ecosystem 77
Creating Blob Storage 78
Windows Azure Content Delivery Network 82
Blob Storage Data Model 83
Blob Storage 83

Representational State Transfer 84
The Blob Storage API 84
Working with containers using the REST interface 84
Working with containers using the StorageClient library 85
Working with blobs 88

Summary 91
Chapter 7: Azure Table Storage 93

Table Storage versus database tables 93
Some of the good stuff 95
Limitations of Table Storage 96
Adding Table Storage to an Azure account 96
Accessing Table Storage 97

Working with tables 98
Working with entities 99

Entity Group Transactions 103
Choosing a PartitionKey 103
Exception handling 104

Retry on exceptions 104
Exceptions on retry 105
Concurrency conflicts 105

Table of Contents

[iv]

Table errors and HTTP response codes 105
Summary 105

Chapter 8: Queue Storage 107
The ins and outs of queues 107

Reasons to use a queue 109
Invisibility time and failover 109
Special handling for binary data 110

Working with queues 110
Listing queues 111

REST API 111
Client library 112

Creating queues 112
REST API 112
Client library 113

Deleting queues 113
REST API 113
Client library 113

Setting metadata 113
REST API 113
Client library 114

Getting metadata 114
REST API 114
Client library 114

Working with messages 114
Summary 117

Chapter 9: Web Role 119
The role of the web 119
Web roles, déjà vu, and ASP.NET 120

Creating the solution and web role project 121
Application diagnostics and logging in the cloud 123
Jupiter Motors web role 126

How do we get there? Here's our code! 128
Additional stored procedures used by the web role 128

Summary 142
Chapter 10: Web Services and Azure 143

Web services and WCF 143
Securing WCF 144
Jupiter Motors web service 145
Creating a new WCF service web role 145
Our WCF web services 149

ERP service interface—IERPService.vb 149
Service Contract 150

Table of Contents

[v]

Operation Contract 150
Data Contract 150
Using ADO.NET datasets 151

ERP service implementation—ERPService.svc.vb 151
LoadStartupData service function 152
GetOrderStatusForOrder service function 152
AddOrderStatusUpdateToQueue service function 153
GetOrdersNotComplete, GetOrderStatuses, and
CreateDataSetFromDataReader class functions 153

DataTable "gotcha" 155
Web Service Definition Language (WSDL) "gotcha" 156
Summary 157

Chapter 11: Worker Roles 159
Worker role internals 159
Uses of worker roles 160

Externally facing worker roles 161
Thread-pool pattern 161

Managing worker roles 161
Best practices 162

The Jupiter Motors worker role 163
Building the Jupiter Motors worker role 163

Summary 168
Chapter 12: Local Application for Updates 169

Brief overview of the application 169
JupiterMotorsERP local application 170

Adding App.config code 173
Testing our application 175
Summary 176

Chapter 13: Azure AppFabric 177
Introduction to Azure AppFabric 177
Access Control 178

Authentication versus authorization 180
Basics of Access Control configuration 181
Requests and Simple Web Tokens 182
Configuring Access Control for Jupiter Motors 183

Configuring Azure AppFabric Portal 184
Configuration tools 186
Creating a Token Policy 188
Configuring a Scope 190
Configuring an Issuer 190
Configuring a Rule 190
Configuring a client application for Access Control 191
Using Access Control in a web service 194

Table of Contents

[vi]

Service Bus 195
Service Bus as message relay 196
Service Bus as connection broker 197

Summary 197
Chapter 14: Azure Monitoring and Diagnostics 199

Azure Diagnostics—under the hood 200
Enabling diagnostic logging 202

Changing the location of the logging configuration 204
Logging config data in our application 206
Transferring and persisting diagnostic data 206
Accessing stored data 208
Summary 208

Chapter 15: Deploying to Windows Azure 209
Setting up hosted service in Windows Azure 209

Setting Hosted Service identifiers 211
Affinity Groups—geographically grouping services 212

Preparation application for deployment 213
Ready for deployment 215
Changing live configuration 218
Upgrading the deployment 219
Running the deployment 220
Summary 221
Conclusion 221

Index 223

Preface
Microsoft's Azure platform is an exciting offering in the cloud services market space.
Designed to compete with Google AppEngine and Amazon Web Services, Azure
stresses a familiar development environment (primarily .NET, SQL Server, and
Visual Studio) with a rich set of capabilities. In addition to using Windows Azure to
host web applications and services, SQL Azure provides a relational database in the
cloud, and Access Control can be utilized to integrate user accounts with identity
providers. We can leverage our skills to build powerful applications on Azure with
relative ease.

The aim of this book is to gain an understanding of the process, advantages, and
challenges of building an application on Azure. We do this by providing in-depth
discussion of the platform as we build a sample application.

What this book covers
Chapter 1, Introduction to Cloud Computing, provides an introduction to cloud
computing and enterprise applications.

Chapter 2, The Nickel Tour of Azure, is an overview of the service offerings in the
Microsoft Azure Platform.

Chapter 3, Setting Up for Development, shows us the tools required for developing
applications for Azure and how to set up our development environments.

Chapter 4, Designing our Sample Application, provides the overview of the sample
application that will be built throughout the rest of this book.

Chapter 5, Introduction to SQL Azure, provides an introduction to SQL Azure and
discusses the differences between SQL Azure and SQL Server 2008. We also create
the database objects for our sample application in this chapter.

Preface

[2]

Chapter 6, Azure Blob Storage, discusses the Blob Storage service and how to interact
with blobs using either a .NET client library or REST services. We also create the
containers and blobs for our sample application in this chapter.

Chapter 7, Azure Table Storage, discusses the Table Storage service and how to interact
with tables using either a .NET client library or REST services.

Chapter 8, Queue Storage, speaks about the Queue Storage service and how to interact
with queues using either a .NET client library or REST services. We also create the
queues needed for our application in this chapter.

Chapter 9, Web Role, gives an overview of what a web role is, and some of the
similarities and differences between a web role and a traditional web application.
We also build the portal web role for our sample application in this chapter.

Chapter 10, Web Services and Azure, discusses WCF web services and provides an
overview of building a web service. We also build the web service needed for our
sample application.

Chapter 11, Worker Roles, speaks about worker roles and many of the functions they can
perform. We also build the worker roles for our sample application in this chapter.

Chapter 12, Local Application for Updates, teaches us how to build a Windows Forms
application that interacts with our web services.

Chapter 13, Azure AppFabric, provides an overview of the Azure AppFabric, and
discusses the capabilities of Access Control and Service Bus. We also configure
Access Control for our sample application.

Chapter 14, Azure Monitoring and Diagnostics, discusses the diagnostic monitoring
services available in Microsoft Azure, along with how to enable these services in
our sample application.

Chapter 15, Deploying to Windows Azure, teaches how to deploy our sample
application to Windows Azure and how to change our application's configuration
once it is deployed.

What you need for this book
For this book, we need a PC running Windows XP or 7. We also need either Visual
Studio 2008 or 2010, or if both are not available, we can go for Visual Web Developer
2010 Express Edition. SQL Server 2008 Express also needs to be installed. We need to
install the Windows Azure Tools for Microsoft Visual Studio, and depending on the
OS and Visual Studio used, there may be some additional hotfixes. A complete list of
requirements can be found at http://msdn.microsoft.com/en-us/windowsazure/
cc974146.aspx.

Preface

[3]

Who this book is for
If you are a developer or architect who wants to build enterprise-level applications
with Azure, but needs to understand more about Azure's capabilities first, this
book is for you. As the examples are in .NET, the book will skew to MS-oriented
developers. But a lot of what is discussed will be applicable to anyone wanting to
work with Azure. No matter what language you use, you provision the application
fabric the same way, and all the underlying concepts will be the same. You will need
experience with Visual Studio, and some basic SQL Server knowledge.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Because there are no keys to link tables
together, the ADO.NET Data Services methods that deal with links are unavailable
to use, including AddLink, DetachLink, and SetLink".

A block of code will be set as follows:

CREATE TABLE [dbo].[Customers](
 [CustomerID] [int] IDENTITY(1,1) NOT NULL,
 [CustomerName] [varchar](50) NOT NULL,
 [CustomerAddress1] [varchar](50) NOT NULL

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

Imports System.ServiceModel

' NOTE: If you change the class name "IERPService" here, you must also
update the reference to "IERPService" in Web.config.
<ServiceContract()> _
Public Interface IERPService

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "The first
setting we need to change is, setting the Script for database engine type option to
the SQL Azure Database option, as seen in the following screenshot".

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Cloud
Computing

Cloud computing is a term that has risen to the top of application development
discussions in a very short period of time. Amazon, Google, and Microsoft (among
many others), all offer cloud-computing services and are not shy about touting its
benefits. If you believe the marketing hype, cloud computing ranks somewhere
between revolutionary and the second coming of your favorite prophet. But what
exactly is cloud computing, and how does it play into the daily lives of enterprise
developers? Let's now try and find some answers.

What is an enterprise application?
Before we hop into the cloud, let's talk about who this book is for. Who are
"enterprise developers"? In the United States, over half of the economy is small
businesses, usually privately owned, with a couple dozen of employees and
revenues up to the millions of dollars. The applications that run these businesses
have lower requirements because of smaller data volumes and a low number
of application users. A single server may host several applications. Many of
the business needs for these companies can be met with off-the-shelf software
requiring little to no modification.

The minority of the United States economy is made up of huge publicly owned
corporations—think Microsoft, Apple, McDonald's, Coca-Cola, Best Buy, and so
on. These companies have thousands of employees and revenues in the billions
of dollars. Because these companies are publicly owned, they are subject to tight
regulatory scrutiny. The applications utilized by these companies must faithfully
keep track of an immense amount of data to be utilized by hundreds or thousands
of users, and must comply with all matters of regulations. The infrastructure for
a single application may involve dozens of servers. A team of consultants is often
retained to install and maintain the critical systems of a business, and there is often

Introduction to Cloud Computing

[8]

an ecosystem of internal applications built around the enterprise systems that are
just as critical. These are the applications we consider to be "enterprise applications",
and the people who develop and extend them are "enterprise developers". The
high availability of cloud platforms makes them attractive for hosting these critical
applications, and there are many options available to the enterprise developer.
This books focuses on Microsoft's cloud development platform named Azure.
Throughout this book, we'll develop a simple example application as an introduction
to the different facets of Microsoft's Windows Azure platform, and we'll also discuss
concepts useful to the enterprise developer, including security and costs, during the
course of our application's development.

What is cloud computing?
At its most basic, cloud computing is moving applications accessible from our
internal network onto an internet (cloud)-accessible space. We're essentially
renting virtual machines in someone else's data center, with the capabilities for
immediate scale-out, failover, and data synchronization. In the past, having an
Internet-accessible application meant we were building a website with a hosted
database. Cloud computing changes that paradigm—our application could be a
website, or it could be a client installed on a local PC accessing a common data store
from anywhere in the world. The data store could be internal to our network or
itself hosted in the cloud. The following diagram outlines three ways in which cloud
computing can be utilized for an application. In option 1, both data and application
have been hosted in the cloud, the second option is to host our application in the
cloud and our data locally, and the third option is to host our data in the cloud
and our application locally.

Chapter 1

[9]

The expense (or cost) model is also very different. In our local network, we have to
buy the hardware and software licenses, install and configure the servers, and finally
we have to maintain them. All this counts in addition to building and maintaining
the application! In cloud computing, the host usually handles all the installation,
configuration, and maintenance of the servers, allowing us to focus mostly on the
application. The direct costs of running our application in the cloud are only for
each machine-hour of use and storage utilization.

The individual pieces of cloud computing have all been around for some time.
Shared mainframes and supercomputers have for a long time billed the end users
based on that user's resource consumption. Space for websites can be rented on
a monthly basis. Providers offer specialized application hosting and, relatively
recently, leased virtual machines have also become available. If there is anything
revolutionary about cloud computing, then it is its ability to combine all the best
features of these different components into a single affordable service offering.

Some benefits of cloud computing
Cloud computing sounds great so far, right? So, what are some of the tangible
benefits of cloud computing? Does cloud computing merit all the attention?
Let's have a look at some of the advantages:

Low up-front cost:
At the top of the benefits list is probably the low up-front cost. With cloud
computing, someone else is buying and installing the servers, switches, and
firewalls, among other things. In addition to the hardware, software licenses
and assurance plans are also expensive on the enterprise level, even with a
purchasing agreement. In most cloud services, including Microsoft's Azure
platform, we do not need to purchase separate licenses for operating systems
or databases. In Azure, the costs include licenses for Windows Azure OS and
SQL Azure. As a corollary, someone else is responsible for the maintenance
and upkeep of the servers—no more tape backups that must be rotated and
sent to off-site storage, no extensive strategies and lost weekends bringing
servers up to the current release level, and no more counting the minutes
until the early morning delivery of a hot swap fan to replace the one that
burned out the previous afternoon.
Easier disaster recovery and storage management:
With synchronized storage across multiple data centers, located in different
regions in the same country or even in different countries, disaster recovery
planning becomes significantly easier.

•

•

Introduction to Cloud Computing

[10]

If capacity needs to be increased, it can be done quite easily by logging into
a control panel and turning on an additional VM. It would be a rare instance
indeed when our provider doesn't sell us additional capacity. When the need
for capacity passes, we can simply turn off the VMs we no longer need and
pay only for the uptime and storage utilization.
Simplified migration:
Migration from a test to a production environment is greatly simplified.
In Windows Azure, we can test an updated version of our application in a
local sandbox environment. When we're ready to go live, we deploy our
application to a staged environment in the cloud and, with a few mouse
clicks in the control panel, we turn off the live virtual machine and activate
the staging environment as the live machine—we barely miss a beat! The
migration can be performed well in advance of the cut-over, so daytime
migrations and midnight cut-overs can become routine. Should something
go wrong, the environments can be easily reversed and the issues analyzed
the following day.
Familiar environment:
Finally, the environment we're working on is very familiar. In Azure's case,
the environment can include the capabilities of IIS and .NET (or Java or PHP
and Apache), with Windows and SQL Server or MySQL. One of the great
features of Windows is that it can be configured in so many ways, and to an
extent, Azure can also be configured in many ways, supporting a rich and
familiar application environment.

Some downsides of cloud computing
Cloud computing sounds wonderful so far, but nothing is perfect. There are aspects
of cloud computing that will involve compromising, and in some cases, may make
cloud computing infeasible for a company; let's have a look at a few of those:

Less control on application environment:
One of the biggest concerns is that we are no longer in control of our
application environment. Giving up control over the maintenance of the
firewalls, servers, and operating system can be troubling, especially for
sensitive institutions such as health or banking. We are now storing data
and our application in a publicly accessible space. There is the possibility of
a data breach through some means other than our application. To address
these two concerns, services and plans calling themselves "private clouds"
are beginning to enter the marketplace. These private clouds will partition
our space in a secure way from prying eyes but still allow us the level of
access, uptime, and backup we desire from the cloud.

•

•

•

Chapter 1

[11]

With someone else in control of the patch level of the operating system,
testing against new updates becomes an ongoing process. None of us have
ever had application issues resulting from a security update, right? The good
news is, we can have snapshots of production environments, which can be
used to test patches. This makes it significantly easier to have a test system
that replicates production.
Higher costs:
For many web-based applications, the costs for a cloud application are
probably higher than standard shared hosting. Based on the pricing
announced at PDC 2009, a simple website application with a single
instance would cost around $100/month to host, compared to around
$5-$20/month for standard shared hosting.
Difficulty with hosting:
Finally, in most cases, hosting an application in the cloud is not as simple
as just deploying to a remote server. For existing applications, there may
be some significant changes, such as replacing local connection strings
with a service-oriented architecture, or utilizing high-performance storage
such as tables and blobs rather than file system storage. Hopefully, the
rest of this book will help diminish any differences between a local and
a cloud application.

Cloud computing infrastructure
Cloud computing requires more than just a server room, and the different providers
employ different technologies. In all cases, cloud computing relies on data centers in
multiple geographic locations, with multiple redundancies of everything. It's quite a
challenge to locate an area that is geologically stable and relatively free from severe
weather events or other natural disasters, making redundancies of locations, in
addition to redundancies of utilities, a necessity.

Cloud data centers have moved away from the "racks-in-a-room" or "raised floor"
design of traditional data centers. One of the more common designs for cloud data
centers is to modify a shipping container to hold racks of servers, and then linking
multiple containers together into a large center. The container-based design is used
more for stability, space efficiency, and physical isolation of machines. A forty-foot
tall rack of servers would be highly unstable and extremely difficult to manage. But
a stack of four containers is very stable, and each container is as easy to manage
as a small server room. It's also more efficient to cool a number of small rooms as
compared to a giant warehouse.

•

•

Introduction to Cloud Computing

[12]

For Azure, Microsoft has taken the container concept a little farther. Microsoft's
Azure containers (called Generation 4 Modular Data Centers or G4MDC) are not
based on a shipping container, although the end design resembles one. Technically,
Microsoft's containers are classified as air handling units and the servers as heaters.
Cooling is achieved by pulling outside air through filters, into the container, and
around the servers at high velocity. In fact, some of Microsoft's new data centers
won't even have roofs! Each G4MDC unit is completely self-contained with airflow
regulation, and its own connections for power and bandwidth. Each 40-foot unit
can accommodate up to 2,000 servers, and some of Microsoft's facilities will house
400,000 to 500,000 servers.

Cloudy skies ahead
Usually, cloudy skies are a bad thing—many a day at the beach has been ruined by
an abundance of clouds. But in the case of cloud computing, the more clouds, the
better! The number of providers of cloud computing services is increasing, but for
the enterprise developer, the three major options at the time of writing are from
Google, Amazon, and Microsoft.

Google's cloud offering is named the Google AppEngine, and currently supports
Python and Java languages. Data are stored in the Google AppEngine data store, a
proprietary database utilizing Google Query Language (GQL). For the interested
developer, Google offers a free plan with multiple applications.

Amazon has several cloud offerings, all under the Amazon Web Services umbrella,
including Simple DB, Elastic Compute Cloud (EC2), Simple Storage Service (S3), and
Amazon Virtual Private Cloud (VPC). Simple DB and S3 are data-storage options
that are used for everything from compressed backup locations to simple content
delivery networks. EC2 is a service that allows us to create a virtual machine to our
specifications, and upload it to our cloud-hosting account. We are still completely
responsible for the care and feeding of our VM, but Amazon provides the hosting
infrastructure. The Amazon VPC is our own private IP block carved out of Amazon's
Web Services. The Amazon VPC can be made part of our local network by means of
VPN from our firewall to our isolated cloud storage, gaining much of the benefits of
cloud storage with the convenience of a local network resource.

Last but not least (and the star of this book) is Microsoft's Azure. Azure actually
comprises three services, each of which can be used independently or combined into
a completely cloud-based application. When most people speak of Azure, they're
speaking of Windows Azure, which is the operating system, application hosting as
well as simple storage services. The second piece of Azure is one that has generated
a great deal of excitement—SQL Azure. SQL Azure is an almost feature complete
version of SQL Server 2008. The final piece of the Windows Azure platform is the

Chapter 1

[13]

AppFabric, which provides connection and authentication services along with the
Service Bus—an enterprise service bus implementation capable of bridging two
different enterprises.

Is cloud computing "enterprisey"
enough?
There have been many products and services making great promises to the enterprise
developer, and a lot of the chatter about cloud computing at times makes it seem
like this is yet another buzzword that will pass. Looking at the companies that have
made the move to the various cloud platforms makes us think otherwise. Even before
its official release, companies such as Domino's, Kelly Blue Book, and Coca-Cola
Enterprises had already adapted applications for Azure, and many more case studies
were posted from PDC 2009. To underscore the flexibility of the Azure platform,
Domino's application is written in Java and served by Tomcat.

No cloud computing platform can be all things to all people. Each platform differs
in its capabilities and service offerings, and price can be a factor as well. Enterprise
applications typically include a database back end, and Google's lack of a relational
database and limited language support (Python and some flavors of Java) make it
a tough sell for enterprises that require a full database and use .NET technologies.
With Amazon's services, we need to build our own virtual machine (or start with
a pre-built one), but we are still responsible for licensing costs, removing the price
advantage. Microsoft's Azure platform is designed to be a very happy medium—a
wide range of languages can be used, there are no licensing costs, and Azure has
some advanced features such as Access Control and Service Bus not found in other
cloud offerings. One thing is for sure—with three big players in the cloud computing
game, the services will become more feature rich, less expensive, and in the end, the
consumers will benefit greatly.

The presence of so many large applications in the cloud is not proof positive enough
to conclude that cloud computing is the way of the future, but such rapid adoption
speaks well of the advantages of cloud-based applications, especially the time to
develop them. The promise of cloud computing platforms is that they are stable,
scalable, easy to develop, and are cost effective. Time will tell which providers perform
the best, but even at this early stage there are plenty of case studies to observe.

Introduction to Cloud Computing

[14]

Summary
This chapter served as an overview of cloud computing, from a definition to
covering a few advantages and disadvantages. We delved a little into the physical
infrastructure of a cloud data center and finished up with a brief overview of the
three main enterprise providers (Google, Amazon, and Microsoft). The cloud
computing offerings have emerged and grown in a very short period of time,
sparking not only a great deal of conversation, but also a fair amount of adoption.

The Nickel Tour of Azure
So, we're enterprise developers, architecting an application to enhance some core
business processes. The decision makers need more information about Azure before
they're sold on a cloud-based application. They want to know what can Azure do,
will we be able to include all the features we need, and will it cost more to develop
for Azure?

Microsoft's marketing group tends to work with a thin thesaurus, so if you're a fan of
confusing product names, Microsoft does not disappoint with their Azure offering.
We'll clear up the mystery of three Azures and four fabrics.

This chapter is by no means an exhaustive answer to the questions that will be raised
and, as the technology is changing so rapidly, it's important to augment this chapter
with some additional research before committing to any features of the application.

Explaining Azure to the managers
We aren't all graced by management with a strong technical background, and yet
they need a deeper dive into the shallow end to achieve a win-win situation and
obtain senior management buy-in to leverage this new platform. Sometimes, it's
like you actually do work in the same office as Dilbert.

As we mentioned before, Microsoft Azure actually refers to a menu of services
offered by Microsoft; each of these services is contained in the Azure Fabric. The
Azure Fabric is essentially every piece of hardware and the software that monitors
and controls the hardware. Every server, every firewall, every load balancer, failover
services in the event of a failure, the Azure portal where we provision and deploy
our application, create and check the health of our current services—they're all part
of the Azure Fabric. Fabric in this case has a very large definition—as far as the
Azure universe is concerned, the Azure Fabric is the continuum of space and time.

The Nickel Tour of Azure

[16]

The three items on the Azure menu are Windows Azure, SQL Azure, and the
AppFabric. The following diagram shows how these items interrelate with one
another, as well as with applications and databases separate from Microsoft Azure.
For the remainder of this book, when we refer to Azure, we will be talking about the
menu of services. When we discuss a specific item, we'll refer to it using its specific
name such as Windows Azure or SQL Azure.

One of the most interesting features of Azure is the support for a number of languages
and web servers. Many people mistakenly think that because Azure is a Microsoft
offering, its usage is limited to .NET and IIS. Nothing could be further from the
truth! In addition to .NET 4.0 (including .NET 2.0, 3.0, and 3.5), Azure also supports
PHP, C++, and Java, as well as Ruby and Ruby on Rails. There is also choice in the
databases and development environments. Web servers include IIS, Apache, and
Tomcat; databases include SQL Server (via SQL Azure) and MySQL; and development
tools include all versions of Visual Studio 2008/2010, Visual Studio Web Developer
2008/2010 Express, and Eclipse—that's a lot of choice! SDKs, toolkits, and plugins
are provided for the more common options and others are being developed. Azure
supports .NET 4, ASP.NET MVC and Silverlight, and new features are being added
in an ongoing basis.

Microsoft has an expanding number of data centers around the world. For
compliance purposes, you can select the data center in which your application will
reside, or locate your application close by to take advantage of regional prices. Your
application is replicated multiple times across the data center of your choosing; so, if
there is a hardware failure on the primary instance, the load balancer will direct the
traffic to an instance that is alive and healthy!

Chapter 2

[17]

Windows Azure
The service offering that has commonly been referred to as Azure is
actually Windows Azure. For the rest of this book, when we refer to Azure,
we'll call it Windows Azure.

Windows Azure is just what it sounds like—it is the operating system part of the
cloud, with a few other features. The most inflexible part of the Azure universe is the
fact that Windows Azure is not designed to provide customized virtual machines;
(custom VHDs are a newly announced offering at PDC10, but are a different service
than Windows Azure) we are limited to a 64-bit version of Windows Server 2008.
We can create VMs of different sizes (the sizes relate to costs), and the OS is highly
configurable, but it must remain Windows.

Windows Azure encompasses two areas of functionality—the compute service and
the storage service. The next diagram shows how these services fit into the Azure
universe. Additionally, there is an Azure Fabric Agent that connects the VM to
the rest of the cloud. The Fabric Controller is a modified version of the Windows
Server 2008 Hyper-V hypervisor, which sits in between our VM and the hardware,
allowing resources to be used by the VM. There is a service that runs on all VMs,
communicating the status of the VM back to the Fabric Controller, allowing the
Fabric Controller to monitor for faults. Should a VM communicate a fault, the Fabric
Controller can initiate a sequence of events to try and get the VM back to the proper
status. This could be anything from a VM reboot to a new VM provisioning.

Compute service
The compute service can be thought of as the actual application code. Applications
are further broken down into web roles and worker roles. Web roles are website
applications, whereas worker roles are analogous to services on a local PC or server.
Application users interact with web roles, while worker roles perform functions
behind the scenes. Worker roles can interact with web roles, but application users
cannot directly interact with a worker role (except in one special case, which we'll
see later).

The Nickel Tour of Azure

[18]

Worker roles are a separate entity from the web roles. They are a completely separate
VM and act independently of each other. It is possible for a worker role to exist
without a web role, just as a web role may exist without a worker role.

Storage service
For local storage of files (both small files consisting of a few kilobytes to large files up
to terabytes) and simple data, we have to rely on the storage services. There are three
components to the storage service: blob, table, and queue. Each has its own purpose,
and we may use any combination of these components or none at all. Storage services
can be used to build a highly scalable system as the amount of data and file storage is
virtually endless (though every increase in storage space used comes with an increase
of monthly cost). Given the way Windows Azure works, we'll more than likely use at
least one of these services in any given application, and our sample application will
use all three.

On Windows Azure, the local file system is not persistent, so our application needs
to store and retrieve its resources from a floating storage location. Data placed in the
storage service is persisted if a VM is shut down or if new VMs are brought online.
For safety, all storage service data is replicated three times.

If this sounds unnecessary or confusing, think of the storage service options
like a roaming profile. Unlike some cloud computing options, an Azure VM is
not dedicated to us or our application. They are more like the PCs in the college
computer lab. One day you may find space on one PC, and another day you have
to use a different PC. If we saved information on the file system on one PC, we
wouldn't have access to it on days where we sat at a different PC, and we probably
wouldn't want others to access our files when they use the same machine where
we stored them. If we turn our Azure application off and then on again, or switch
between a staging and production VM, we're actually changing VMs. We need our
information to be available immediately, and preferably without a great deal of work
to distribute it—hence, the floating storage service.

Blob Storage
Blob is an abbreviation for binary large object. Blob Storage is designed to contain
large amounts of binary data such as images, music files, or complete documents
and spreadsheets. Blobs are stored in containers, and each container can be up to
50 GB and contain a number of blobs. Up to 8 KB of metadata can be stored with
each container in name/value pairs (note that metadata is at the container level,
not the individual blob).

Chapter 2

[19]

If an Azure-based web application displays a logo, that logo will be called from
a Blob Storage endpoint, rather than a local file. We could also build a document
management system or content management system using Blob Storage. To access
a blob, we use a standard REST interface or a .NET client library.

Table Storage
This is the part where people get the most confused with all the Azure options.
Windows Azure Table Storage is not the same as SQL Azure. Table Storage is not
relational, does not have a defined schema, and does not use a query language for
data access. In contrast, SQL Azure is an almost feature complete version of SQL
Server 2008.

Table Storage operates more like a hash table or an indexed array. We do connect to
table storage using ADO.NET Data Services, and we can also retrieve data through
either Linq or REST. Table Storage can be used to store all manner of data, with a
capacity of terabytes. Table properties (columns or values) can be strongly typed to
a number of data types, and data is partitioned to improve scalability. Despite the
large capacity of a table, the total combined size of the properties in a record can
be a maximum of 1 MB.

Tables are created and managed programmatically from code we build, and
although they seem limited, tables are actually a powerful storage method. A
single table in Table Storage can actually contain more data than a single SQL
Azure database, and contents can be loaded into generic or strongly types
objects for ease of programming.

Queue Storage
Queue Storage is unlike the previous two storage services. In Windows Azure, a
queue is a holding area for requests waiting to be processed by a worker role. Web
roles interact with worker roles by adding requests to the queue. Unlike tables and
blobs, which persist data for repetitive use, the Queue Storage is a container for
transient data. One example of a common use could be the usage of Queue Storage
to deposit messages based on events that occurred. Here, a worker role can pick
these messages on a timed interval and perform event-based workflows, coded
into the worker role, based on the message contents.

Each Windows Azure account can have multiple queues, and each queue can contain
up to 8 KB of metadata in addition to the requests. Queue Storage is accessed via
a REST interface, or .NET client library and can be accessed by any client with the
correct storage credentials for the account.

The Nickel Tour of Azure

[20]

Azure Fabric Agent and Controller
The Azure Fabric Agent is one of four things that have "fabric" in their name in the
Microsoft Azure menu. The Windows Azure Fabric is part of the overall Azure
Fabric, and is an interface between the Azure Fabric Controller and the individual
VM and the VM's contents.

SQL Azure
Originally known as SQL Data Services, SQL Azure for many people is the most
exciting item on the Microsoft Azure menu.

SQL Azure is an almost feature complete implementation of SQL Server 2008
Geographic data types are now supported. Unlike Table Storage, SQL Azure is
completely relational, with a defined schema, supports T-SQL, and we can connect
via ADO.NET or ODBC.

We can manage our SQL Azure databases through the SQL Azure Portal, directly
via sqlcmd, or through SQL Server Management Studio 2008 R2. At the time of
writing, SQL Server 2008 R2 is the most recent release of SQL Server, and is the only
SQL Server Management Studio (SSMS) version that can completely connect to
SQL Azure. Microsoft provides a SQL Azure Database Manager (formerly known as
Project Houston), an online tool that is used to manage SQL Azure databases. There
are also a couple of third-party tools, such as SQL Azure Manager and the Omega
Web Client, for managing SQL Azure. Undoubtedly, more tools will arise as more
people begin to work with SQL Azure. The SQL Azure Manager (though in Alpha
testing at the time of writing) can be found at http://hanssens.org/post/SQL-
Azure-Manager.aspx. The Omega Web Client (along with other great third-party
tools for Azure) can be found at http://www.cerebrata.com.

Just as with SQL Server, we can have multiple databases per SQL Azure instance.
Database sizes are limited, so if it's possible our application may exceed the
maximum size, it's a good idea to either build in an archiving strategy and tools,
or plan for a multiple SQL Azure account and multiple database solution at the
beginning. Behind the scenes, and just like the storage options in Windows Azure,
SQL Azure data is replicated three times to ensure availability and backup.

SQL Azure Data Sync is scheduled for final release soon. Formerly known as Project
Huron, SQL Azure Data Sync enables synchronization of data between SQL Azure
instances, or SQL Azure and on premises SQL Server databases.

Chapter 2

[21]

Windows Azure platform: AppFabric
AppFabric is another part of Azure with "fabric" in its name. AppFabric was
originally known as BizTalk Services, and then later as .NET Services. Unlike the
Azure Fabric or the Azure Fabric Agent, AppFabric is not a low-level controller/
manager of the virtual machines. Instead, AppFabric provides the Service Bus,
Access Control services, and connection components.

The Service Bus is the functionality that serves as a bridge between on-premises
applications and Windows Azure. The Service Bus also facilitates bidirectional
communication between two non-Azure applications.

Bridging local and Azure applications is useful in certain cases such as if there is
information in our local warehouse management system (WMS) we want to make
visible to our clients via an Azure-based portal we develop. If our WMS has an
API we'd like to manifest directly to our partners, we can also use the Service Bus
to abstract the WMS API. In this case, we'd register our WMS's endpoint with the
Service Bus, which would then create a public set of its own endpoints. We'd provide
the Azure endpoint URIs to our partners to be consumed by their applications. When
a call is made against the public endpoints, Azure queues that client request and
passes it to our WMS. Our WMS responds to Azure's request, and Azure sends the
data on to our partner. The Azure Service Bus handles the discovery and registration
of the endpoints, and handles the NAT as well. In terms of securing our WMS, no
one needs to know our private IP address, and we limit our firewall to a smaller list
of IPs to allow through.

In the Service Bus examples, we'd obviously need a way to limit access to the
application or endpoints. This is one of many places where the Access Control
functionality of AppFabric is important. Access Control issues security tokens
that can be consumed by Azure and non-Azure applications via REST (SOAP has
been announced but was not in place at the time of writing). Access Control is a
claims-based identity service, similar to OpenID or Microsoft's LiveID.

AppFabric also incorporates projects codenamed Dublin and Velocity. Both Dublin
and Velocity are standalone projects that can be used with both Azure and more
traditional applications. At the time of writing, these projects were announced
but not released, so more detailed information should be gathered directly from
Microsoft. Project Dublin is an effort to enhance the management of .NET 4 WCF and
WF services as well as IIS management and monitoring. Dublin utilizes PowerShell
commandlets and IIS integration.

It is useful to note that AppFabric can be used separately from the
other parts of Azure, and its components can be used individually
from one another.

The Nickel Tour of Azure

[22]

Codename Dallas
Project Dallas is Microsoft's entry into the new data-as-a-service (DaaS) market.
The goal of Dallas is to provide a single authoritative source and a single billing
method for public data. Think of Dallas as a "data marketplace", where we can buy
subscriptions to data useful for our applications, and where data providers can sell
their data.

The data in Dallas are accessible via a REST API, and can be consumed by
applications on any platform. Support will be for SQL Server and SQL Azure to
directly consume Dallas data, but this has not been delivered at the time of writing.

More information on Codename Dallas can be found at http://www.microsoft.
com/windowsazure/dallas/.

Development Fabric
The Development Fabric is yet another part of Azure with "fabric" in its name. The
Development Fabric is a specialized Windows Azure environment used for local
development. It is akin to the Azure Fabric, but is hosted on a single local machine.
We install the Development Fabric with the Windows Azure SDK and other tools.
We'll use the Development Fabric as we create our sample application through the
rest of this book.

Considerations for the ASP.NET
developer
It's easy to think developing a web role is just the same as developing a traditional
website, but that's not the case. The web role is not just a website, but a complete
ASP.NET web application. If we have multiple instances of our web role application
running, the Azure load balancer doesn't guarantee a user's connections will all be
made on the same VM. One consequence of this is that our application should either
be stateless, or use the database (or table/blob) or cookies to maintain session state.
In-process session state isn't an option.

Imagine a local web farm with a load balancer that does not maintain session state.
The ideal solution in this case would be to use some type of session storage to
maintain state across servers. This is also the case with Windows Azure web role
instances. We cannot maintain state in-process if we bounce between machines;
however, the state can be shared using our table/blob storage or our SQL Azure
service. While we can attach our debugger to our local instance of the Development
Fabric, we cannot debug applications remotely that have been deployed in Windows

Chapter 2

[23]

Azure. We will need to maintain our logging and use it to debug issues, if present in
the cloud. Because we are not guaranteed to browse our web application on the same
server after every call, there is no persistence with local storage. Microsoft answers
this issue quickly with table and blob storage. All data and files that need to be
accessible need to be saved in a storage service or a SQL Azure database (the highly
scalable option is using storage services).

How are Azure costs calculated?
Microsoft Azure has two methods for calculating the monthly service
charges—consumption pricing or commitment (subscription) pricing. Because
Windows Azure, SQL Azure, and AppFabric are three independent services, each
is priced separately and with its own rates. The charges may seem like nickel-and-
diming as they are broken out by the different features of each service, but having
the charges broken out allows us to utilize and pay for only what we use.

In addition to production-scale pricing plans, Microsoft also offers limited-use plans
suitable for development and conference room pilot efforts. For the most current
rates and offers, visit http://www.microsoft.com/windowsazure/pricing/. We're
not going to list the base rates here, as they are likely to change over time. Instead,
we'll look at how the charges are applied to each service in the next section.

Cloud services such as Amazon EC2 bill in a manner close to what Microsoft does,
yet offer a little more flexibility with types of VMs (they offer both UNIX/Linux
pricing and Windows pricing, which varies based on the type of hosting needed).
They also offer commitment plans, but theirs is called "Reserve Instances". This is
where a flat fee is paid up front, based on a time commitment, but a reduced usage
fee is charged on a monthly basis.

Calculating Windows Azure pricing
Windows Azure charges are calculated based on utilization of four
resources—compute time, storage, storage transactions, and data transfers.

Compute time is billed as service hours or the amount of time an application is
deployed. When calculating compute time charges, keep in mind each instance of an
application runs in its own VM. If we have two instances of an application running
simultaneously for an hour, that is calculated as two service hours of compute time.

Storage is billed as the daily average gigabytes consumed in the storage service
(tables and blobs). To minimize costs, we want to minimize the size of resources we
store for a long duration. If we have a 30 GB blob in storage for a month, our average
daily consumption would be 30 GB. If we were to upload a 30 GB blob for a single
day, our average consumption would be 1 GB.

The Nickel Tour of Azure

[24]

Storage transactions are the CRUD operations we perform against tables and blobs.
Every create, read, update, and delete operation we perform against our data is
a transaction.

Data transfers are billed as the total number of gigabytes uploaded or downloaded
via the Internet during a month. Any communication within sub-region (same data
center) is not charged. This is helpful for HTTP calls between different services,
and also emphasizes the correct usage of Affinity Groups (discussed in Chapter 15,
Deploying to Windows Azure) to keep dependent services together.

The other transactions are application requests, and pass through the Queue Storage.
At the time of writing, there was no specific charge for application requests.

Calculating SQL Azure pricing
SQL Azure is sold in two editions—Web and Business—plus data transfers. SQL
Azure databases are billed monthly but calculated per diem, and we are only
charged for the days we have the database.

Both editions are self managed and support Visual Studio, SQL Server Management
Studio, and SQL Server Integration Services. The Web Edition has a capacity of
up to 5 GB, while the Business Edition has a capacity of up to 50 GB and supports
advanced features such as auto-partition and upcoming plans for common language
runtime (CLR) integration.

As with Windows Azure, data transfers are calculated as the total number of
gigabytes uploaded or downloaded via the Internet during a billing month.

Calculating AppFabric pricing
AppFabric charges are billed by Access Control transactions, Service Bus
connections, and data transfer.

Each claim of identity made to the Access Control service is a transaction. Charges
are calculated based on the actual number of transactions during a billing month.

Service Bus connections are sold as individual pay-as-you-go connections, or can
be purchased in flat-rate packs. Individual connections are charged based on the
maximum number of connections utilized during a day. Connection packs are
calculated daily, based on the pro-rata number of connections. If we buy a 30-pack
of connections at the beginning of a month and then buy another 30-pack one week
in, we are charged for 7 connection days for the first week, and then 14 connection
days thereafter.

Chapter 2

[25]

As with Windows Azure, data transfers are calculated as the total number of
gigabytes uploaded or downloaded via the Internet during a billing month.

Summary
In this chapter, we had a quick look at the features of Microsoft Azure and how to
calculate the costs of the Microsoft Azure platform. From Windows Azure, to SQL
Azure, to Dallas, Microsoft has a complete and useful cloud offering. We'll spend
the rest of this book examining most of these features of Windows Azure, SQL
Azure, and AppFabric in greater depth, and building a sample application using
these features.

Setting Up for Development
Now that we've learned the high-level concepts and benefits of cloud computing and
Windows Azure in the previous two chapters, the next question in our mind should
be "How do I create my applications for the Windows Azure cloud?" To fabricate
anything, we must have the right tools at hand. In this chapter, we'll discuss and
install the tools necessary for local development of Windows Azure.

Downloading the tools
In order to build an Azure application, we need a framework to access the
underlying classes, a development environment, and possibly a few hotfixes as well.
The downloads necessary vary by OS (32 or 64 bit, XP or 7), language choice (.NET
or PHP), and development environment (Visual Studio or Eclipse). The most current
list of tools needed for Azure development is available at http://msdn.microsoft.
com/en-us/windowsazure/cc974146.aspx.

Configuring the local machine for
development
First, let's talk about operating systems; more specifically, the operating systems
supported by the Windows Azure Development Fabric.Windows Azure Development Fabric.. Windows Azure is a
relatively new platform, released to the world in February 2010 as a production
environment. It was developed after the release of Windows Vista, and Windows
Vista SP1 is the earliest supported operating system for local development. Windows
Vista SP1, Windows 7, and Windows Server 2008 are also supported for local
development. The Windows Azure Tools for Microsoft Visual Studio will install a
local Development Fabric and development storage, which allows us to develop, test,
and debug locally without pushing our application into the cloud. We can think of
the local development fabric and storage as an Azure emulator. The Development

Setting Up for Development

[28]

Fabric (and other local tools) requires one of the Windows operating systems
mentioned above. When it's time to deploy our application, we'll use these same
tools to package our application for deployment.

Once we determine that we have a supported OS, the next thing we need to do is
install the .NET Framework, enable Internet Information Services (IIS) 7.0 (or later)
features, and enable Windows Communication Foundation (WCF) HTTP activation.
To check the latest version of the .NET Framework, we can use a registry editor
tool, or the regedit command to check the registry settings, at HKEY_LOCAL_
MACHINE | SOFTWARE | Microsoft | NET Framework Setup | NDP. You will
see each version installed. If v4 or higher is installed, there is nothing else to check.
If v3.5 is the highest version listed, select that registry section to view the registry
values. We need to make sure we have version 3.5.30729.01 or higher, which is the
version for the .NET 3.5 SP1 Framework. If the .NET 3.5 SP1Framework or later is not
installed, you will need to download from http://www.microsoft.com/net/ and
install the framework. The registry will appear similar to the following screenshot:

An alternative to using a registry tool is to open Internet Explorer and enter
javascript:alert(navigator.userAgent) into the address bar (this command
doesn't work in other browsers). This will open a modal dialog with the entire
user-agent values, including the .NET Framework version. The modal dialog looks
similar to the next screenshot. Note that earlier versions of the .NET framework
report as .NET CLR, but version 4 reports as simply .NET.

Chapter 3

[29]

Next, we need to enable IIS features. To do this, we will need to go to the Control
Panel | Programs | Turn Windows features on or off. In the Windows Features
box shown in the next screenshot, expand Internet Information Systems | World
Wide Web Services | Application Development Features and make sure the
boxes beside ASP.NET and CGI are checked. The CGI option installs both CGI and
FastCGI, and is necessary to host PHP applications on IIS. Additionally, FastCGI aids
performance when multiple versions of the same framework are installed on IIS. CGI
is an optional IIS feature, but it is recommended to enable it.

Setting Up for Development

[30]

To enable WCF HTTP Activation, expand Microsoft .NET Framework 3.5.1 and
make sure Windows Communication Foundation HTTP Activation is checked,
as seen in the screenshot:

Our development platform will be Microsoft Visual Studio 2008 SP1, though the free
Microsoft Visual Web Developer 2008 SP1 is supported, as is Visual Studio 2010.

In addition to Visual Studio 2008, we need to have Microsoft SQL Server 2005/2008
Express or higher installed. This is also a free application from Microsoft. Typically,
this is installed with Visual Studio unless a custom install is done and this option
was not selected for installation.

Once we have our development and database environments installed, there are a few
Microsoft hotfixes that may need to be applied:

KB967631: Update for Visual Studio 2008 SP1 Debugger (not needed for
Visual Studio 2010)
KB963676: Improve Visual Studio Stability (not needed on Windows 7)
KB967131: Support for FastCGI on the Development Fabric (not needed for
Windows 7 or Windows Server 2008 SP2 Operating Systems)

•

•

•

Chapter 3

[31]

Again, the required hotfixes depend on the OS and IDE version, and the most
up-to-date list can be found at http://msdn.microsoft.com/en-us/
windowsazure/cc974146.aspx.

Installing Windows Azure tools and SDK
We've finally reached the point where we're about to start installing Windows
Azure-specific features and tools. The installation of each of these is very
straightforward.

The first thing to install is the Windows Azure Platform Training Kit. This training
kit includes presentations, demos, and hands-on labs from Microsoft, targeted at
Windows Azure Platform, SQL Azure, and .NET Services. The training kit can be
downloaded directly from Microsoft. Once you download the file from Microsoft
and execute the application, you will see the following EULA (End User License
Agreement). Read over the EULA and click Accept to begin installation. Choose
your install location and click Install.

Setting Up for Development

[32]

That's it for installing the Windows Azure Platform Training Kit. What's next? We
need to install the Windows Azure Tools and SDK, which will add the necessary
pieces of the development platform to your local machine. This is also a simple
download from Microsoft and has a very simplified installation. Once downloaded,
execute the application, click Next in the installation wizard, read the EULA, check
the box next to I have read and accept the license terms, and click Next to begin
the installation.

On the next screen, we confirm what we are installing and accept the EULA. This is
your last chance to make changes, or to cancel the installation quickly. Clicking Next
will begin the install process, which can take approximately 10 to 15 minutes.

Chapter 3

[33]

Once this installation is complete, we can now open Visual Studio and we should see
new project types. To check, open Visual Studio (or Visual Web Developer), click File
| New Project... and we should see Cloud Service as a project type and a Windows
Azure Cloud Service template, as we see in the next screenshot:

Setting Up for Development

[34]

We have now finished preparing our development environment on our local
machines! Now that we're done with this, it's time to dig into the fun work!

Summary
In this chapter, we prepared our local systems for development with the necessary
tools, SDK, and a training kit prepared by Microsoft to expedite the learning
experience, to give us the tools we need, and get us ready to start developing
our enterprise application.

Designing our Sample
Application

Like any project in real life, we start with the business requirements. At Jupiter
Motors, we build custom recreational vehicles ((RVs). We've recently opened a
new state-of-the-art assembly plant, and implemented a new Enterprise Resource
Planning (ERP) solution. Jupiter Motors now wants to build a customer portal to
improve our relationship with our customers, and our team is tasked with building
this portal. In this chapter, we'll outline the business processes and portal features
relevant to our project, as well as the reasons we've chosen Azure. We'll also sign up
for our Azure account.

Project design
All RV sales are handled by independent dealers, who work with our customers and
place the customers' orders directly into our ERP system using remote terminals.
All orders are reviewed by a production manager, and are approved for production
or sent back to the dealer for revision. Once an order has been approved, it should
become visible on the portal to the customer.

Assembly begins, and as the process may take several weeks, we want to upload
photos of the RV while it's being assembled so that impatient customers can watch
the progress. Assembly teams at each stage of the process are responsible for
uploading photos as they finish their work.

When the assembly is complete, a driver will deliver the RV to the customer. The
customer inspects the RV, and accepts the delivery by signing a tablet PC carried by
the driver.

Designing our Sample Application

[36]

After looking at this summary, we know our customer portal will need the
following components:

A mechanism to transfer data from our ERP system to the portal.
A database on the portal to hold the transferred data.
A way to upload and store photographs of the RV.
User interface for the customers to view their RV.
Ability to print copies of their order.
Some way to make sure only customers can log in to the portal.
A way to make sure the customers can see only their vehicle and
order details.
Serve as an intermediary between customer acceptances and the ERP system.
Delivery drivers will update the order in our portal when a customer accepts
delivery, and a process in the ERP system will retrieve acceptances and
update the ERP system.
A debug mode, where we can trace events in case there are issues.

An overview of the information flow is shown in the next diagram:

Why are we choosing Azure for our portal? Presumably, we want to use Azure for
reasons other than it being the "shiny new thing". Some of the reasons we've decided
to use Azure are:

We're already familiar with Visual Studio, SQL Server, and .NET, so Azure
will be familiar to us. Even if we were Java or PHP developers, the Eclipse
toolkits and SDKs mean that our skills would still transfer to Azure.
In this project, storage and retrieval of photos are a principal component.
When compared to storing photos in a SQL Server database or on a file
system, Blob hosting is easy to use and cost effective.
Photos require a great deal of bandwidth, and Azure has a content delivery
network (CDN) we could utilize if necessary.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[37]

Other companies (for example, Outback—a case study can be found at
http://www.microsoft.com/caseStudies/Case_Study_Detail.aspx?cas
estudyid=4000005861) have had great success with Azure social sites. They
were able to scale their sites as traffic increased, and could quickly scale to
handle traffic spikes.
There is talk of adding videos, message boards, and other social features to
the site, and the Azure platform helps us add these features—in short it helpsthe Azure platform helps us add these features—in short it helps
us plan the future!
Azure is a pay-as-you-go platform. Having just invested a great deal into
an ERP implementation, management is reluctant to invest in additional
hardware and software licenses at this time. The monthly fees fit our
revenue structure better.

Integrating application with cloud
features
Now it's time to pull this all together, matching our application requirements to the
different features of Microsoft Azure. Not every feature of Azure will be used in this
project, but as we gain familiarity with Azure, we'll discuss the major features so that
we can be prepared for future projects.

Requirement Azure feature Summary
Development
environment

Development
Fabric

The Azure SDK includes the Development
Fabric, which we will use to develop our
application.

Portal data storage SQL Azure An almost feature complete version of SQL
Server 2008, SQL Azure will be familiar to us.

Data transfer SSIS SQL Server 2008 R2 supports connections to
SQL Azure.

Photo upload Blob storage,
Client Library

We'll develop a simple Windows Forms
Application to upload photos into blobs using
a client library, rather than the REST API.

Customer portal UI Web role Our portal will be a custom-built ASP.NET
application.

Limiting access to
users

Access Control One of AppFabric's two components is a
claims-based identity service known as Access
Control.

Copies of orders SSRS The full SSRS server is not yet supported,
but we can use a local report and the
ReportViewerControl.

•

•

•

Designing our Sample Application

[38]

Requirement Azure feature Summary
Delivery acceptance Web role/WCF,

Queue, REST API
We'll develop a simple Windows Forms
application that creates a message in the
queue via the REST API when a customer
accepts delivery of their RV.

Processing delivery
acceptance

Worker role A worker role process will read acceptances
from the queue and update the database
accordingly.

Debug mode Diagnostics Using a value in a configuration file, the
portal can be placed in a debug mode, where
we can trace events. We'll retrieve logged
events from Table Storage.

To sum it all up, our application will look like the following diagram:

As we work through our sample application, it's important to note that this is
all sample code. As with all sample applications, there are a lot of shortcuts in
the code that will be taken throughout the book from this point forward. Much
of the code will be used as example only, with no error handling and very little
security measures. With that said, this code should not be used in any production
environment unless security and error handling are added. Any code herein should
also be modified to comply with coding standards, as applicable.

Chapter 4

[39]

Creating an Azure account
A Windows Live ID (WLID) is necessary for creating an Azure account. Any e-mail
address can be used to create a WLID so that we're free to use our corporate e-mail
addresses. The account should be chosen with care, as only one ID can be used as
the Account Administrator. The Account Administrator is responsible for the billing
account and adding services. The login credentials will need to be shared if there are
to be multiple people responsible for overall management of the Azure account, or
at least being a backup administrator. Different WLIDs can be designated as Service
Administrators. Service Administrators are responsible for the management of the
services they've been assigned to. These tasks can include scaling the instances of
our web role or adding additional table or queue storage.

Limiting the administration task to a single user isn't out of the ordinary. Usually
the ultimate responsibility for production deployment should rest with one person
such as the build master or equivalent role; however, for disaster planning, there
should always be a capable backup in place. A management API exists and its
likely management tools will be developed as time goes on. Also, MSDN Premium
and higher subscriptions include Azure benefits. This is a great way to do some
prototyping and testing, but the login is bound to the same one used for the MSDN
account. However, this means that a new account, bound to a different e-mail
address, needs to be created for the production account.

The first step in creating an Azure account is to visit http://www.microsoft.com/
windowsazure/ and choose our pricing plan. (At the time of writing, one had to click
the Sign up now button to work on pricing plan.) These plans are likely to change
over time, but they come in essentially two versions—pay-as-you-go where we are
billed monthly for the services we use, and pre-paid style where we pay up front for
the services we expect to use. The services in the pre-paid plans are discounted from
the pay-as-you-go plan, but require a large up-front payment. If we use less than the
resources we estimated, this indicates we have overpaid, but if we use more than we
estimated, we need to pay for the additional services. Because estimating usage is
difficult until we've been online for a while, the pay-as-you-go plan is a little easier to
get started on. Once the site is up and running, we can analyze our usage and change
the billing plan if necessary.

Designing our Sample Application

[40]

Once we've found the plan that fits our needs, we click the Buy button, and we're
taken to the Microsoft Online Services Customer Portal (MOCP). If we aren't
signed in to our WLID, we're prompted to do so. The MOCP is the portal where we'll
review our Azure billing, but this is not the portal where we actually manage Azure.
Microsoft's other services, such as Hosted Exchange and Live Meeting, are also billed
through the MOCP.

In the MOCP, we progress through a shopping cart where we supply our billing
information and accept Microsoft's terms and conditions. Once we've completed our
purchase, our Azure account will be provisioned and a welcome e-mail will be sent
to the account's e-mail address. Now we can log in to the Windows Azure Platform
Portal at http://windows.azure.com/, and set up the services we need. Setting
up the services is a bridge we'll cross when we get there. In the meantime, we have
plenty to do to get this project started. As the database is a foundation, we'll start
there in the next chapter.

Summary
In this chapter, we outlined the business requirements for our portal project,
matched the requirements to Azure features, and set up our Azure account. In the
following chapter, we are going to take a closer look at SQL Azure. In addition to
learning what SQL Azure is (and is not), we'll set up our local and portal databases.

Introduction to SQL Azure
Originally named SQL Data Services, SQL Azure is a feature of the Azure platform
that generates a great deal of excitement. It's no overstatement to say nearly every
enterprise application has a need for a relational database, and one of the leading
databases utilized for enterprise applications is SQL Server. SQL Azure brings SQL
Server to the cloud.

For our sample application, we'll use a simple relational database built on SQL
Azure. Here's what we'll cover in this chapter:

An in-depth look at SQL Azure
Provisioning our SQL Azure server
Developing and deploying our database to the cloud

Overview of SQL Azure
The first question usually asked about SQL Azure is: "Is SQL Azure really SQL
Server 2008, or is it something else?" The answer is a little of both. Retail editions of
SQL Server 2008 include Web, Workgroup, Standard, Enterprise, and Datacenter.
SQL Azure is another edition of SQL Server 2008, and shares many of the same
features as the other editions.

Development on SQL Azure is nearly identical to developing on SQL Server, with
most commands and objects either fully or partially supported. However, because
SQL Azure is a service, there are significant differences in how SQL Azure and on
premises SQL Server are managed. At the time of writing, additional components
such as SQL Server Reporting Services (SSRS) and SQL Server Analysis Services
(SSAS) are not supported on SQL Azure, although on premises installations of SSRS
and SSAS can consume data from SQL Azure databases. SQL Azure Reporting was
announced at PDC '10, and is expected to be available in 2011.

•

•

•

Introduction to SQL Azure

[42]

Replication is not available in SQL Azure (don't panic, our SQL Azure databases
are maintained behind the scenes in multiple copies, with automatic failover).
Service Broker is another SQL Server feature currently not supported by SQL Azure.
Depending on the needs of the application, a queue and worker role may be able to
replace the Service Broker. Microsoft promises to introduce additional SQL Azure
services soon, so we may one day see these missing features in the cloud.

SQL Azure can be used individually or in conjunction with other Azure services.
In either case, local applications can connect directly to SQL Azure. When used in
conjunction with Windows Azure services, local applications can also access data
stored in SQL Azure via web services.

Perhaps the most common method for accessing data in SQL Azure is to use a
Windows Azure Web Role or Worker Role. Using a Web Role is similar to an
ASP.NET website backed by SQL Server.

Microsoft touts five key benefits in using SQL Azure:

Manageability
High availability
Scalability
A relational data model
A familiar development model

•

•

•

•

•

Chapter 5

[43]

We'll use these five benefits as the outline for our overview of SQL Azure.

Manageability
The biggest differences in managing SQL Azure and an on premise SQL Server
is that we no longer have to purchase or maintain physical hardware. By design,
Microsoft has separated the physical administration tasks from the logical
administration tasks, and assumes responsibility for the physical management
of SQL Azure. As Microsoft describes it (http://msdn.microsoft.com/en-us/
library/ee336241.aspx):

[t]his approach helps SQL Azure provide a large-scale multi-tenant
database service that offers enterprise-class availability, scalability,
security, and self-healing.

Microsoft has also removed the ability to control physical resources of SQL Azure.
For example, there is no option to change either the hard drive or file group in
which a database resides. This makes sense, as the file system is not accessible to us.
Likewise, the backup and restore options are also not available (don't panic, refer
to the High availability section later in the chapter for information regarding data
protection). Likewise, there is no option to attach a database in SQL Azure.

As Azure has its own methods of load balancing and resource governing, the new
Resource Governor is blocked, as are any T-SQL or DDL statements that modify or
access the physical resources.

On the downside, a couple of very powerful tools we've come to rely upon are not
available. Neither SQL trace flags nor the Database Tuning Advisor are available to
us, which will make debugging and performance tuning more complicated.

Managing SQL Azure
SQL Azure databases are managed through the SQL Azure portal, which is part
of the same portal as other Azure services, if we're using any. We use the portal to
create or delete databases, and to manage database level security, but we use other
tools to manage the contents of each database.

Similarities
Each SQL Azure account is provided a single instance of SQL Azure, which can
contain multiple databases.

Introduction to SQL Azure

[44]

As in SQL Server 2008, we administer our databases, as well as the roles and user
accounts. All connections to SQL Azure run through port 1433, same as SQL Server.
If an on premise client application needs to connect directly to SQL Azure, firewalls
on both ends need to have port 1433 opened. By default, external connections to a
SQL Azure instance are blocked for security reasons. In order for our applications
or management tools to connect to SQL Azure, we must whitelist certain IP ranges
using the SQL Azure portal.

Differences
Most system-stored procedures are not supported (http://msdn.microsoft.
com/en-us/library/ee336237.aspx), no system tables are supported, and SQL
Azure has limited support for system views (http://msdn.microsoft.com/en-us/
library/ee336238.aspx).

Databases are sold in two editions—a Web Edition, which has a maximum size of 5
GB, and a Business Edition, which has a maximum size of 50 GB. As we can expect,
pricing is a tiered structure based on database size; the current pricing can be found
at http://www.microsoft.com/windowsazure/pricing/. Security administration
such as creating users and allowing access to databases is handled in the SQL Azure
portal. As Microsoft handles the entire infrastructure, patches and service packs
are no longer a part of our lives; nor are log files filling up drive space, as logs are
not counted as part of the space calculation. However, it is possible a service pack
upgrade could break some production code, and this is one of the criticisms levelled
at SQL Azure by career database administrators (DBAs). Several noted DBAs discuss
their concerns (http://www.sqlmag.com/article/services/considering-sql-
azure.aspx), notably:

The lack of a backup option prevents restoring the database to a previous
time. If someone accidentally deletes a table, there is no way to retrieve it.
Some of the more useful system stored procedures are not available, which
can make troubleshooting more complicated.

The data are stored on hardware in a network that is physically out of the DBA's
control. DBAs are tasked with keeping data safe and secure, and often that involves
direct administration of the physical servers and working closely with network
managers. With SQL Azure, uptime and security are the responsibility of a faceless
group of people, and DBAs are reluctant to make guarantees about anything they
cannot control.

•

•

Chapter 5

[45]

Although there is not a true backup option, SQL Azure supports a database copy
functionality, not surprisingly named SQL Azure Database Copy. The database can
be copied to the same Azure server, or a different Azure server, and the copy can be
scheduled. Documentation about the database copy functionality can be found at
http://msdn.microsoft.com/en-us/library/ff951624.aspx.

The SQL Azure team addressed the issue of patching SQL Azure in a blog post at
http://blogs.msdn.com/b/sqlazure/archive/2010/04/30/10004818.aspx. As
SQL Azure keeps three redundant copies of our data on three separate instances, and
only a single instance would be patched at one time, failover and redundancy are
still in place during an update.

SQL Server Management Studio 2008 R2 supports direct connections to SQL Azure,
but because connections to SQL Azure are solely on port 1433, the SQL Browser is
not available.

High availability
Another feature of SQL Server missing in SQL Azure is replication. Without the
options for backup/restore or replication, how can our data be highly available?
Two concepts that we hear most often with regards to SQL Azure are "built-in data
protection" and "self healing".

Built-in data protection: The built-in data protection involves our data
being replicated immediately and automatically across several physical
machines. This replication is part of the SQL Azure platform, and we needn't
set it up, neither do we have any control over it. Note that this is not the same
replication as SQL Server Replication, but is a different mechanism
for duplicating our data.
Self healing: SQL Azure is self healing in that if a physical machine
should become unavailable, there is automatic failover to another machine
containing all of our data. As this failover machine is also in the Azure
Fabric, the failover process is invisible to clients and no reconfiguration is
necessary should a secondary machine come online.

Having high availability does not mean we can be reckless with resource utilization,
and we cannot assume a connection will always remain open. In order to be fair to
all tenants of SQL Azure, a SQL Azure connection may be closed for a number of
reasons, including the following:

Excessive resource utilization
Long-running queries
Long-running transactions

•

•

•

•

•

Introduction to SQL Azure

[46]

Connections being left idle for a longer duration
Server failures and the resulting failover

As developers, we cannot assume our connection will always be open, and we'll
need to compensate accordingly.

Another way that our data are highly available is due to the scalability aspects of
SQL Azure.

Scalability
Should our applications become an overnight sensation, we can add additional
storage capacity via the SQL Azure portal. Database capacity can be increased on
the fly, up to the subscription limits. For example, a Web Edition database comes
in two sizes—1 GB and a 5 GB. For a new site, a database of the size 1 GB is more
than sufficient and it also has less cost per month compared to the 5 GB database.
As demands grow, we can upgrade to the 5 GB database, by simply using the
ALTER DATABASE command to increase the maximum database size.

The load balancing aspects of the Azure Fabric help ensure client requests are
answered and met in a timely fashion.

Relational data model
Windows Azure tables and blobs are useful, but they'll only get us so far with a
complex data-driven application. For one of these, we need to rely on a relational
database provider; SQL Azure is a true RDBMS in the cloud.

Familiar development model
SQL Azure is based on SQL Server—need we say more? Actually, yes, a lot more.To
start with, SQL Azure supports T-SQL and returns a tabular data stream, the same
as SQL Server; so, in many cases, only the connection string needs to be changed
(after the database is deployed, of course). We can connect our applications to SQL
Azure using familiar drivers, including System.Data.SqlClient, SQL Server 2008 and
2008 R2 ODBC Drivers, and SQL Server 2008 PHP driver (OLEDB is not supported,
which is a consideration when using SSIS). Tools we can connect with include SQL
Server 2008 R2 Management Studio, SQLCMD, Visual Studio 2010, and a number of
third-party tools. To transfer data to SQL Azure, we can use SQL Server Integration
Services (SSIS), BCP.exe, System.Data.SqlClient.SqlBulkCopy, or INSERT statements.

•

•

Chapter 5

[47]

If we don't want to utilize direct connections to the database, we can instead use
ADO.NET, ASP.NET, or ADO.NET Data Services in our applications to access data
in SQL Azure.

Important to realize in this discussion is the term "familiar", rather than "identical".
Because SQL Azure is a managed service, some management features have had
functionality reduced or have been removed completely. T-SQL is the query
language used by SQL Azure, but there are three levels of support for T-SQL
commands—complete, partial, and unsupported. Further details on T-SQL support
can be found at http://msdn.microsoft.com/en-us/library/ee336250.aspx. As
we discuss similarities and differences, the discussion of differences is going to seem
to outweigh the similarities. We don't need an in-depth discussion on similarities,
as these should be familiar concepts and tools. Keep in mind the discussion is
comparing SQL Azure and SQL Server 2008.

What's the same in SQL Azure?
One of Microsoft's goals in creating SQL Azure was to provide an environment for
experienced SQL Server developers to utilize their skills. Here, we review where SQL
Azure is similar to what we already know about it.

Data types
Nearly all data types are supported, including XML and geography. For a table
of supported data types, visit http://msdn.microsoft.com/en-us/library/
ee336233.aspx. The addition of the geographic and geometric data type around
the MIX10 timeline raised hopes that the .NET CLR will be supported, as these data
types rely on the CLR.

Database objects
As we'd expect, database tables are the same (with one exception, refer to the What's
different... section later in the chapter), including table variables and local temporary
tables. Supported table features include:

Constants
Constraints
Triggers
Statistics management
Index creation and maintenance

SQL Azure also fully supports views, stored procedures, and user-defined functions.

•

•

•

•

•

Introduction to SQL Azure

[48]

Fully supported T-SQL commands
For a complete overview of supported T-SQL commands, refer to the MSDN
documentation at http://msdn.microsoft.com/en-us/library/ee336270.
aspx. Some of the most common T-SQL commands supported by SQL Azure are
mentioned next, but this is not the complete list.

Data Definition Language (DDL) commands:
Alter Role/Schema/View

Create Role/Schema/Statistics/View

Drop Login/Role/Procedure/Schema/Statistics/Synonym/
Type/User/View

DBCC SHOW_STATISTICS

UPDATE STATISTICS

Data Manipulation Language (DML) commands:

Select clause/@local_variable From

Begin_Transaction Group By

Begin…End Having

Cast Order By

Convert Top

Ceiling Try...Catch

Coalesce Where

Delete Commit/Rollback/Save Transaction

Declare Cursor While

Delete

Truncate Table

If...Else

Data Control Language (DCL) commands

Deny Object/Schema Permissions

Grant Object/Schema Permissions

Revoke Object/Schema Permissions

•
°

°

°

°

°

•

•

°

°

°

Chapter 5

[49]

Partially supported T-SQL commands
Partial support for T-SQL commands indicates that the SQL Azure syntax does
not support all the arguments or options that the SQL Server 2008 syntax does. For
instance, CREATE TABLE in SQL Server 2008 has a parameter to choose the filegroup
(usually ON PRIMARY); because filegroups are not selectable in SQL Azure, the
filegroup argument is not supported. There are additional options not supported
by the SQL Azure version of CREATE TABLE, and the official MSDN documentation
should be consulted if there are questions about the support for a particular command.

The following table summarizes some of the more common T-SQL commands
with partial support in SQL Azure. For the complete list of partially supported
T-SQL commands, read the MSDN article at http://msdn.microsoft.com/en-us/
library/ee336267.aspx.

Create/Alter Function Grant/Deny/Revoke Database
Permissions

Create/Alter/Drop Index Execute

Create/Alter/Drop Table Create/Alter User

Create/Alter/Drop Trigger Alter Login

Create/Alter View Enable/Disable Trigger

SQL Server built-in functions
As with T-SQL commands, the intrinsic functions of SQL Server 2008 have varying
degrees of support in SQL Azure. For full details regarding SQL Azure support of
SQL Server 2008 intrinsic functions, consult the official MSDN documentation at
http://msdn.microsoft.com/en-us/library/ee336248.aspx.

Function type Support Examples of supported statements
Aggregate Full AVG, COUNT, MAX, MIN, SUM
Ranking Full DENSE_RANK, NTILE, RANK, ROW_NUMBER
Configuration Partial @@LOCK_TIMEOUT, @@SERVERNAME, @@SPID
Cursor Full @@CURSOR_ROWS, @@FETCH_STATUS, CURSOR_

STATUS

Date and Time Full DATEADD, DATEDIFF, DATEPART, GETDATE,
DAY, MONTH, YEAR

Mathematical Full ABS, CEILING, FLOOR, LOG, ROUND, SQUARE
Metadata Partial COL_LENGTH, COL_NAME, INDEX_COL,

OBJECT_NAME

Security Partial CURRENT_USER, SESSION_USER, USER_NAME

Introduction to SQL Azure

[50]

Function type Support Examples of supported statements
String Full CHAR, LEFT, LEN, LTRIM, RIGHT, RTRIM
System Partial APP_NAME, CASE, CAST, CONVERT, COALESCE,

@@IDENTITIY, ISDATE, ISNULL, @@ROWCOUNT
Text/Image Partial PATINDEX

ODBC String Full BIT_LENGTH, CONCAT
ODBC Numeric Full TRUNCATE

ODBC Date/Time Full CURRENT_DATE, CURRENT_TIME, DAYNAME,
HOUR, MINUTE, QUARTER

Multiple active result sets
First introduced with ADO.NET 2.0 and SQL Server 2005, multiple active result
sets (MARS) is the ability for multiple commands to be executed against a
single connection, and to maintain multiple open recordsets. MARS can improve
application performance by not limiting applications to a single command or
result set.

What's different in SQL Azure?
It might seem there are more differences than similarities between SQL Server 2008
and SQL Azure, but features that are the same don't merit much discussion. In many
cases, differences between SQL Azure and SQL Server 2008 are due to SQL Azure
being a managed service, and much of the administration has been abstracted away
from us.

One of the first differences is that we cannot choose the file placement of the database
files (neither data nor log). We have no way to manage filegroups, so those options
are also not available to us.

Another difference at the server level is how we set collation. Collation cannot be
set at the server or database level; instead, collation can only be set at the column or
expression level. The default collation for SQL Azure is SQL_LATIN1_GENERAL_CP1_
CI_AS, which is a fairly general collation for US-based applications. The following is
the deciphered collation:

LATIN1_GENERAL = US English
CP1 = code page 1252
CI = case-insensitive
AS = accent-sensitive

•

•

•

•

Chapter 5

[51]

If a feature was deprecated in SQL Server 2008, SQL Azure does not support that
feature. One such feature is SQL Server trace flags, which were used for debugging
performance issues. SQL Azure does not support SQL trace flags.

In a major departure from SQL Server 2008, SQL Azure does not support the
Common Language Runtime (CLR). We also can't access server configuration
options, as some don't exist and others are the responsibility of Microsoft.
Additionally, SQL Azure does not support any of the SQL Server 2008
system tables.

At the database level, SQL Azure does not support database mirroring. There is no
need for this, as our data are replicated across multiple physical servers.

Number of databases
When we establish a SQL Azure account, a SQL Azure instance is provisioned for
us. Each SQL Azure instance can contain up to 150 databases, including the master
database. Additional databases will require a separate SQL Azure instance.

Database objects
There is one difference regarding tables. Database tables must have a clustered index
created before we can insert data. It is possible to create a table without a clustered
index, but no inserts can be made until such an index is added. Global temporary
tables are not supported in SQL Azure.

Service Broker, SQL Browser, and DTC
The SQL Server Service Broker handles request queuing and asynchronous messaging
in a local installation of SQL Server. In SQL Azure, some of this functionality is
redundant with the Azure Fabric, and hence there is no Service Broker in SQL Azure.

The SQL Browser is also not available in SQL Azure. The only port we can access SQL
Azure through is 1433, and the SQL Browser relies on dynamic ports.

Finally, SQL Azure does not support either distributed queries or transactions,
and there is no Distributed Transaction Coordinator (DTC). All transactions
must be local.

T-SQL commands
SQL Azure does not support the USE command for changing databases. If we're
running a long set of commands and need to switch databases, we can't in SQL
Azure. Instead, we must create a connection to each database, and execute the
commands against the desired connection.

Introduction to SQL Azure

[52]

Also, 4-identifier referencing (<database_name>.<schema>.<table_
name>.<column>) is not supported.

The majority of the unsupported T-SQL commands are system administration
commands, which don't apply to us. Notably, most of the DBCC commands are not
supported, nor are most of the ALTER commands related to databases and servers.
The table that follows is a partial list of some common T-SQL commands that are
unsupported; for the complete list of unsupported commands, consult the MSDN
documentation at http://msdn.microsoft.com/en-us/library/ee336253.aspx.

ALTER DATABASE GRANT/REVOKE/DENY Server
Permissions

BACKUP KILL

BULK INSERT OPENROWSET

CREATE/ALTER/DROP LOGIN RESTORE

DBCC CHECKDB SELECT INTO Clause

DBCC DBREINDEX SET ANSI_NULLS

DBCC INDEXDEFRAG SET ANSI PADDING_OFF

DBCC SHRINKDATABASE WRITETEXT

System functions
A number of system functions are also not supported by SQL Azure as they
could compromise information abstracted from us. Again, the following table is
a partial list; the complete list of unsupported system functions is in the MSDN
documentation at http://msdn.microsoft.com/en-us/library/ee336253.aspx.

fn_get_audit_file sys.login_token

fn_get_sql sys.user_token

sys.fn_validate_plan_guide sys.numbered_procedure_parameters

Data synchronization
We do not have the option of replication or transaction log shipping in SQL Azure,
but there is a data synchronization service currently in CTP. Utilizing the Microsoft
Sync Framework, we can perform one-way or bidirectional synchronization
between a number of SQL Azure databases, set up in a hub-and-spoke arrangement
(rather than a true replication). When we set up synchronization, we choose a hub
database to be our master database, and then pair with our member databases.
Synchronization can be the entire database, or limited to a selected group of tables.
Synchronization can be on demand or scheduled. Foreign key constraints are not
enforced in the member databases so that data can be inserted in any order. If a

Chapter 5

[53]

foreign key relationship is necessary for our application, the member databases
would not be suitable for using as a back-end database.

On the first synchronization, the database schema will be created for us in the
member databases, and data will be completely synchronized. After the initial
synchronization, only modified data will be synchronized. Unfortunately,
schema changes will not be synchronized after the initial synchronization—we'll
have to remove the synchronization, modify our database, then modify the hub
database, re-establish the synchronization pairings, and start the process all
over again. Member databases will be reallocated as if we were performing
an initial synchronization.

An introduction to the data sync service can be found at http://blogs.msdn.com/
b/sqlazure/archive/2010/07/06/10035099.aspx. Because this service is in CTP
at the time of writing, we recommend reviewing additional information that may
have been published later for the most up-to-date information.

Security
Because SQL Azure is implemented in a different way compared to on premise
SQL Server, there are a number of differences regarding security. A complete
overview of SQL Azure security is found in the MSDN documentation, available
at http://msdn.microsoft.com/en-us/library/ee336235.aspx.

First and foremost, only SQL Authentication can be used. This make sense, as there
really is no Azure Active Directory a user account could be part of. Each time a
connection is made, the SQL credentials must be supplied.

In SQL Azure, there is no "sa" account. Instead, the user account used to provision
the instance becomes the equivalent of "sa". In SQL Server 2008, the roles
securityadmin and dbcreator are both server-level roles, and are not present in SQL
Azure—loginmanager replaces securityadmin, whereas dbmanager replaces dbcreator.

For security reasons, several user names are "reserved". We cannot create user names
that begin with:

Admin
Administrator
guest
root
sa

•

•

•

•

•

Introduction to SQL Azure

[54]

Connecting to SQL Azure is slightly different too. Encryption must always be
supported, and only TCP/IP connections can be made. Before we connect to SQL
Azure, the SQL Azure firewall needs an exception for our IP range, and the local
computer may need a firewall exception for port 1433. If we are allowing Windows
Azure applications to connect to SQL Azure, we need to whitelist Windows Azure
by adding the IP address 0.0.0.0 to the Azure firewall.

Development considerations
In ADO.NET, application should have retry logic to catch errors due to service
closing. Because of failover and load balancing, we can't guarantee that a connection
will always be available or even accessible.

Depending on how an application supports the tabular data stream (TDS), the login
name in the connection string may need to be <login>@<server>.

All design and user administration must be performed using T-SQL scripts. This
means if we're used to performing these functions via the GUI in SSMS, it's time
to brush up on the command syntax.

Finally, there are two sizes of SQL Azure database. If our database reaches
its maximum size, we'll receive the 40544 error code and we'll be unable to
insert/update data (but read operations will continue as normal). We'll also
be unable to create new database objects.

Managing maximum size
If we reach the maximum size limit set for a Web Edition database (5 GB), then it is
not easy to migrate from a Web Edition database to a Business Edition database. If
our database exceeds 5 GB in size and we want to allow further growth, we would
need to create a Business Edition database and use the database copy to migrate our
data. We can also remove data to free some space, but there can be a 15-minute delay
before more data can be inserted.

If we reach the maximum size limit set for a Business Edition database (50 GB), our
only option is to remove some data to free some space. Again, there can be a
15-minute delay before more data can be inserted.

To prevent issues in our live databases, it's important we have a good policy
regarding data retention and storage. Instead of storing images and other binary
objects in SQL Azure, use blob service and store a pointer in the database. Older data
can be archived into other SQL Azure databases, or into an on premise database.

Chapter 5

[55]

Management tools
As we've mentioned in this chapter, developers who are used to the GUI interface
of SSMS, will find managing SQL Azure frustrating. A good grasp of DDL query
commands is necessary to fully manage a SQL Azure database. Sometimes, creating
and managing a SQL Azure database may involve two or more tools.

SQL Azure portal
The SQL Azure portal is the only place where databases can be created and firewall
rules can be set. We can also retrieve connection strings from the SQL Azure portal.

SSMS 2008 R2
Because SQL Azure was released after SQL Server 2008, SQL Server Management
Studio Express 2008 R2 or any higher version must be used to connect to SQL Azure.
Only the client tools need to be installed, but this will upgrade any client tools and
drivers currently installed on the system.

Unlike SQL Server, tables in SQL Azure cannot be created using the properties grid
style of table designer. Instead, every configuration must be performed via SQL
queries. And we do mean everything—table creation, user creation, user permissions,
setting foreign keys, and so on.

Project Houston
Project Houston is a Silverlight-based database editing tool provided by Microsoft.
It can be found at http://www.sqlazurelabs.com/houston.aspx. At the time of
writing, Project Houston was in CTP 1. Databases must be created in the SQL Azure
portal; however, in Houston we can create tables using the more familiar properties
grid. At the time of writing, alterations to tables (such as adding foreign keys) must
still be done with DDL queries. We can also run queries, create stored procedures
and views, and directly enter/edit data. Creating a new table is shown in the
following screenshot:

Introduction to SQL Azure

[56]

One advantage of using Houston over SSMS is that we don't need to configure
firewall rules for every client location. Because Houston is a Microsoft service,
the 0.0.0.0 rule allows access to our databases.

Access 2010
In an announcement that made a great number of enterprise developers weep,
Microsoft added support for SQL Azure to Access 2010 via ODBC. Tables can
be linked or users can use pass-through queries. Access 2010 support provides a
database entry point business users are familiar with, but which can sometimes
grow into an unmanageable mess.

The SQL Server Native Client 10.0 or higher is required for access to connect to SQL
Azure. This driver is installed with any flavor of SQL Server 2008 R2, SSMS 2008 R2,
or as a standalone driver in the SQL Server 2008 R2 Feature Pack at http://www.
microsoft.com/downloads/en/details.aspx?FamilyID=ceb4346f-657f-4d28-
83f5-aae0c5c83d52&displaylang=en.

If we want to migrate an existing Access 2010 database to SQL Azure, the
recommendation is to use the SQL Server Migration Assistant (SSMA) rather
than the Upsizing Wizard.

Managing databases, logins, and roles in
SQL Azure
Managing databases and logins in SQL Azure is very similar to managing them in an
on-site instance of SQL Server. Using T-SQL commands, you can create/alter/drop
logins, create/drop databases, and create/alter/drop users, though some parameters
are not supported. One thing to remember is that all server-level and database-level
security must be applied to the "master" database that is created when your SQL
Azure service has been provisioned. Also, the administrator username you selected
when provisioning the service is similar to the "sa" user in an on-site instance of
SQL Server.

There are also two new roles in SQL Azure: loginmanager and dbmanager. The
loginmanager role is similar to the securityadmin role of SQL Server, whereas the
dbmanager role is similar to the dbcreator role of SQL Server. You can add users to
either of these roles if you want them to have the permissions to create/alter/drop
logins and users (loginmanager), or create/alter/drop databases (dbmanager).

Chapter 5

[57]

Migrating schema and data
The ability to create new database objects is good, but for a number of applications
we'll need to migrate an existing database. For an on-premise SQL Server, to move a
database, we'd commonly use a backup and restore, or detach and reattach—neither
of those options are available to us in SQL Azure. However, many of the other
options we might use, such as DAC Packs or SSIS, are available to us in Azure. An
overview of how to migrate applications and data to SQL Azure can be found at
http://msdn.microsoft.com/en-us/library/ee730904.aspx.

Manually scripting objects and data
Before any scripts are manually created, there are a few scripting options we need
to change to ensure our objects are created correctly on SQL Azure. In SSMS, the
settings we need to change can be found at Tools | Options | SQL Server Object
Explorer | Scripting. The first setting we need to change is, setting the Script for
database engine type option to the SQL Azure Database option, as seen in the
following screenshot. Changing this setting will change some other settings and
disable others.

By default, dependent objects will not be scripted. This may need to be set to "True"
depending on the needs and database schema. Likewise, triggers and indices will not
be scripted by default. If these are necessary, we need to enable these settings too.

Introduction to SQL Azure

[58]

For complete control over the migration process, we can create scripts for specific
objects and data by using SSMS, then running these scripts into our SQL Azure
database. For large databases, this can be a time-consuming process. Using this
method will script foreign keys, so it may be necessary to create tables in a particular
order, or tweak the scripts to run table first, and then defaults and foreign keys.

A related option is to use the Generate Script Wizard (GSW). To use the GSW,
right-click on the database name and choose Tasks | Generate Scripts. The table
scripts are not created in a relational manner, so we need to ensure we run the
scripts in the proper order. The output is a .sql file, which we can execute
against a database instance.

SQL Azure Migration Wizard
The SQL Azure Migration Wizard is a community project that can be used to migrate
objects and data from SQL Server 2005/2008 databases. The project can be found
at http://sqlazuremw.codeplex.com/. Because there may be incompatibilities
between the older SQL Server versions and SQL Azure, it is recommended that a test
migration be performed into a local SQL Server 2008 (or higher) database, and then
migrated into SQL Azure.

The SQL Azure Migration Wizard allows us to migrate an entire database, or to
select specific objects to migrate, as seen in the next screenshot. The output is T-SQL
scripts that can be executed in SQL Azure to make the necessary changes.

We have a great deal of control over the migration settings, including migrating only
tables, only data, or tables and data by changing the Script Table / Data setting. It's a
good idea to fully review these setting before generating the SQL scripts.

Chapter 5

[59]

SQL Server Integration Services (SSIS)
We can migrate tables and data using the SQL Server Import and Export Wizard, or
create an SSIS package from scratch. SSIS packages do not execute on SQL Azure,
they can only create connections to SQL Azure database and perform the functions
as programmed. If we plan on using SSIS, we will need an on-premise SQL Server
instance to host the packages.

SQL Server Import and Export Wizard
The SQL Server Import and Export Wizard (http://msdn.microsoft.com/en-us/
library/ms140052.aspx) can be used to migrate tables and data between an
on-premises SQL Server and SQL Azure. At the end of the wizard, we have the
option of saving the package created by the wizard so that we can use it again.
To launch the wizard, right-click on a database in an on-premise instance and
choose Tasks | Export Data (at the time of writing, the Import wizard cannot
be launched by clicking on a SQL Azure database, so we have to export from
our on-premise instance).

Introduction to SQL Azure

[60]

We can choose to migrate all the data in one or more tables, or write a query to
migrate a limited data set from a single table, as seen in the next screenshot:

We can also set options to create tables, enable identity insert, and more, by
choosing the Edit Mappings button from the Select Source Tables and Views
screen. These are important options to consider if we want to save the package
produced by the wizard.

Chapter 5

[61]

Although views can be selected, the view definition is not migrated. The view is
treated as a table in the source database, and a table will be created in the target
database with the same name as the view, containing the data in the view at the
time the package was run. View definitions should be migrated with some other
technique to ensure they are migrated correctly.

At the end of the wizard, we can choose to save the SSIS package as well as execute
it. Be careful while saving the package, as everything we asked the package to do
will be saved, and some of the settings we chose may be a good idea for a first time
(such as creating tables) but not a subsequent run (as the tables exist, they cannot be
created and the package will fail).

Creating packages from scratch
We can create SSIS packages to migrate database objects and data to SQL Azure. SSIS
uses an ODBC connection to connect to SQL Azure, and just as with Access 2010, we
need to make sure the SQL Server Native Client 10.0 driver is installed. Besides the
driver requirement, creating an SSIS package in Business Intelligence Development
Studio (BIDS) is the same as working with other SQL Server versions.

When running on a schedule, SSIS packages are not suitable for migrating database
objects. SSIS is good for migrating data, and may be an alternative to the data
synchronization services mentioned above.

DAC Packs
One more option we have is the data-tier application package (DAC Pack). DAC
Packs can be used to migrate database schemas from one server instance to another.
DAC Packs can be created either in SSMS or with custom .NET code. The SSMS
option is easier, but is a manual process. An overview of using DAC Packs can be
found at http://msdn.microsoft.com/en-us/library/ee210546.aspx.

We can extract DAC Packs from SQL Server 2000 or higher, but we can deploy DAC
Packs only on SQL Azure and SQL Server 2008 R2 or higher a version.

A DAC Pack is created in SSMS by right-clicking on a database name, then choosing
Tasks | Extract data-tier application. By following through the wizard, we can
create a DAC Pack. The output of the Extract wizard is a file stored on our local
machine. A .dacpac file is actually just a ZIP file containing several XML files that
describe our database's structure.

Introduction to SQL Azure

[62]

To deploy the DAC Pack, we need to connect to the database instance in SSMS 2008
R2, right-click on the instance name, and choose Deploy Data-tier Application.

One of the major downsides to a DAC Pack is that not all object types are supported.
We also don't get to choose what is included in our DAC Pack; SQL Server assumes
we want everything to be included. This means we need to be careful with what
we're doing or we might migrate some half-baked features into production, or
migrate views or stored procedures that reference a non-available database.

DAC Packs do not migrate data. So after we deploy a DAC Pack, we would need to
use SSIS to migrate the data.

If we want to use custom .NET code, the MSDN documentation for the DAC Pack
namespace can be found at http://msdn.microsoft.com/en-us/library/
microsoft.sqlserver.management.dac.aspx.

BCP
For migrating large amounts of data to SQL Azure, the command line BCP.exe
utility can be utilized. BCP works the same with SQL Azure as any other version of
SQL Server. Documentation for the BCP.exe utility can be found at http://msdn.
microsoft.com/en-us/library/ms162802(SQL.105).aspx.

The Jupiter Motor's ERP system
database and the Dealer Orders database
Here is a visual representation of our databases. The following is the visual look at
the portal database:

Chapter 5

[63]

The following is the visual look of the Jupiter ERP database:

The portal database design is very simple, consisting of only five tables. The Jupiter
ERP database has only three tables, and will be a local database (this will not live in
SQL Azure; it is a representation of an on-site ERP system). Now that we know what
the designs of the databases are, let's get started with the database creation of the
portal database in SQL Azure.

Introduction to SQL Azure

[64]

SQL Azure portal
When we sign up for the SQL Azure service at http://windows.azure.com, we are
given a URL to the Azure portal. To access our SQL Azure area of the portal, click on
the link in the menu bar to the left for SQL Azure, as seen here:

There is some basic information such as the Server Name (the URL is for connections
from external sources, such as SSMS), the Administrator Username, and our selected
Server Location, which we will use throughout our travels in SQL Azure. Also, in
the box at the bottom we can see a visual list of our databases (including the default
master database that was already created for us). We are also able to change firewall
settings to let specific IP blocks into our SQL Azure service. We can also create a new
database here, view connection strings to the selected database, test connections to
the database, or drop a database.

Chapter 5

[65]

To use SQL Azure from an outside connection via a tool such as SSMS, we must
whitelist the IP block we are connecting from. To do this, select the Firewall Settings
tab and click the Add Rule button. A popup opens that allows us to enter IP range.
To make things a little easier, our current IP address is displayed. When finished,
click the Submit button; it may take up to five minutes for the changes to propagate.

Creating our database
Now that we've done everything we need to do to hit our SQL Azure database from
an outside connection, let's set up the database by using the Server URL in SSMS
and our Administrator Username/Password to connect from there. Once connected,
the following scripts will create our application databases, add logins named
JupiterMotors for the JupiterERP database and Portal for the Portal database
(which we will use throughout the book), and all the tables/keys in the diagram at the
beginning of the chapter. Please note that the CREATE DATABASE and CREATE LOGIN
commands must be executed separately in the master database, and the CREATE USER
command is to be executed in the Jupiter ERP database. Also, we must log into the
each database through SSMS to run the script for creating the tables and keys.

We will first start with creating the portal database, login, and user:

/* Execute this line in the master database */
CREATE DATABASE [Portal]

/* Execute this line in the master database */
CREATE LOGIN Portal WITH Password='P@ssword'

/* Execute this line in the Portal database */
CREATE USER Portal FROM LOGIN Portal

Introduction to SQL Azure

[66]

Next, we're going to create the tables. This code must be executed after logging
directly into the portal database using SSMS:

/**

* This section below will create our tables for the Portal database
* -Customers table
* This table will hold all of our Customer address
information
* -OrderStauuses table
* This table will hold all of our Order Statuses for
our orders
* -OrderHeaders table
* This table will hold our Order Header information
* -OrderDetails table
* This table will hold our Order Detail information
* -OrderPictures table
* This table will hold the information of the pictures
placed into
* Blob Storage for the Jupiter Motors portal

************/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[Customers](
 [CustomerID] [int] IDENTITY(1,1) NOT NULL,
 [CustomerName] [varchar](50) NOT NULL,
 [CustomerAddress1] [varchar](50) NOT NULL,
 [CustomerAddress2] [varchar](50) NULL,
 [City] [varchar](50) NOT NULL,
 [StateProv] [varchar](50) NOT NULL,
 [PostalCode] [varchar](50) NOT NULL,
 CONSTRAINT [PK_Customers] PRIMARY KEY CLUSTERED
(
 [CustomerID] ASC
))
GO

CREATE TABLE [dbo].[OrderStatuses](
 [OrderStatusId] [int] IDENTITY(1,1) NOT NULL,
 [Description] [varchar](50) NOT NULL,

Chapter 5

[67]

 CONSTRAINT [PK_OrderStatuses] PRIMARY KEY CLUSTERED
(
 [OrderStatusId] ASC
))
GO

CREATE TABLE [dbo].[OrderHeaders](
 [OrderHeaderID] [int] IDENTITY(1,1) NOT NULL,
 [OrderDate] [smalldatetime] NOT NULL,
 [RequestedDate] [smalldatetime] NOT NULL,
 [CustomerPO] [varchar](50) NOT NULL,
 [CustomerID] [int] NOT NULL,
 [OrderStatusID] [int] NOT NULL,
 CONSTRAINT [PK_OrderHeader] PRIMARY KEY CLUSTERED
(
 [OrderHeaderID] ASC
))
GO

CREATE TABLE [dbo].[OrderPictures](
 [OrderPictureID] [int] IDENTITY(1,1) NOT NULL,
 [OrderHeaderID] [int] NOT NULL,
 [PictureFile] [varchar](100) NOT NULL,
 [PictureDate] [smalldatetime] NOT NULL,
 CONSTRAINT [PK_OrderPictures] PRIMARY KEY CLUSTERED
(
 [OrderPictureID] ASC
))
GO

CREATE TABLE [dbo].[OrderDetails](
 [OrderDetailID] [int] IDENTITY(1,1) NOT NULL,
 [OrderHeaderID] [int] NOT NULL,
 [ItemNumber] [int] NOT NULL,
 [ItemDescription] [nchar](10) NULL,
 [QuantityOrdered] [int] NOT NULL,
 CONSTRAINT [PK_OrderDetails] PRIMARY KEY CLUSTERED
(
 [OrderDetailID] ASC
))
GO

Introduction to SQL Azure

[68]

After the tables have been created, let's now create the database keys:

/**

* This section below will create our foreign keys for the Portal
database
* -FK_OrderDetails_OrderHeaders
* Links OrderDetails to OrderHeaders using
OrderHeaderID Primary Key
* -FK_OrderHeaders_Customers
* Links OrderHeaders to Customers using CustomerID
Primary Key
* -FK_OrderPictures_OrderHeaders
* Links OrderPictures to OrderHeaders using
OrderHeaderID Primary Key
* -FK_OrderHeaders_OrderStatuses
* Links OrderHeaders to OrderStatuses using
OrderStatusID Primary Key

************/
ALTER TABLE [dbo].[OrderDetails] WITH CHECK ADD CONSTRAINT [FK_
OrderDetails_OrderHeaders] FOREIGN KEY([OrderHeaderID])
REFERENCES [dbo].[OrderHeaders] ([OrderHeaderID])
GO
ALTER TABLE [dbo].[OrderDetails] CHECK CONSTRAINT [FK_OrderDetails_
OrderHeaders]
GO

ALTER TABLE [dbo].[OrderPictures] WITH CHECK ADD CONSTRAINT [FK_
OrderPictures_OrderHeaders] FOREIGN KEY([OrderHeaderID])
REFERENCES [dbo].[OrderHeaders] ([OrderHeaderID])
GO
ALTER TABLE [dbo].[OrderPictures] CHECK CONSTRAINT [FK_OrderPictures_
OrderHeaders]
GO

ALTER TABLE [dbo].[OrderHeaders] WITH CHECK ADD CONSTRAINT [FK_
OrderHeaders_Customers] FOREIGN KEY([CustomerID])
REFERENCES [dbo].[Customers] ([CustomerID])
GO
ALTER TABLE [dbo].[OrderHeaders] CHECK CONSTRAINT [FK_OrderHeaders_
Customers]
GO

ALTER TABLE [dbo].[OrderHeaders] WITH CHECK ADD CONSTRAINT [FK_
OrderHeaders_OrderStatuses] FOREIGN KEY([OrderStatusID])

Chapter 5

[69]

REFERENCES [dbo].[OrderStatuses] ([OrderStatusId])
GO
ALTER TABLE [dbo].[OrderHeaders] CHECK CONSTRAINT [FK_OrderHeaders_
OrderStatuses]
GO

Finally, for our Portal database, we must create the stored procedures to insert
customers, order headers, and order detail:

/**

* This section below will create our stored procedures in the
* Portal database. There is one stored procedure for creating
* the new customer placing the order, one to insert the Order
Header, and one
* that will insert each line item on the order into the Order
Details table.
* Orders will be inserted with a OrderStatusID = 1 (Unapproved) in
the
* OrderHeaders table.

************/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[NewCustomer]
@Name varchar(50),
@Address1 varchar(50),
@Address2 varchar(50),
@City varchar(50),
@StateProv varchar(50),
@PostalCode varchar(50)
AS
BEGIN
 SET NOCOUNT ON;

 INSERT INTO Customers(CustomerName, CustomerAddress1,
CustomerAddress2, City, StateProv, PostalCode)
 VALUES(@Name, @Address1, @Address2, @City, @StateProv,
@PostalCode)

 SELECT Scope_Identity()

END
GO

Introduction to SQL Azure

[70]

CREATE PROCEDURE [dbo].[NewOrderHeader]
@OrderDate datetime,
@RequestedDate datetime,
@CustomerPO varchar(50),
@CustomerID int

AS
BEGIN
 SET NOCOUNT ON;

 INSERT INTO OrderHeaders(OrderDate, RequestedDate, CustomerPO,
 CustomerID, OrderStatusID)
 VALUES (@OrderDate, @RequestedDate, @CustomerPO, @CustomerID, 1)

 SELECT SCOPE_IDENTITY()

END
GO

CREATE PROCEDURE [dbo].[NewOrderDetail]
@OrderHeaderID int,
@ItemNumber varchar(50),
@ItemDescription varchar(50),
@QuantityOrdered int

AS
BEGIN
 SET NOCOUNT ON;

INSERT INTO OrderDetails(OrderHeaderID, ItemNumber, ItemDescription,
QuantityOrdered)
VALUES(@OrderHeaderID, @ItemNumber, @ItemDescription,
@QuantityOrdered)

END
GO

Our portal maintains the order status in the OrderHeaders table. Let's insert the
statuses in the OrderStatuses table:

/**
* These statements will insert the Order Statuses
**/

INSERT INTO dbo.OrderStatuses(Description)

Chapter 5

[71]

VALUES ('Unapproved')

INSERT INTO dbo.OrderStatuses(Description)
VALUES ('Approved')

INSERT INTO dbo.OrderStatuses(Description)
VALUES ('Scheduled For Production')

INSERT INTO dbo.OrderStatuses(Description)
VALUES ('In Production')

INSERT INTO dbo.OrderStatuses(Description)
VALUES ('In Transit for Delivery')

INSERT INTO dbo.OrderStatuses(Description)
VALUES ('Accepted')

INSERT INTO dbo.OrderStatuses(Description)
VALUES ('Complete')

That takes care of the Portal database. We will now create the JupiterERP database.
This creation of database, logins, users, tables, keys, and stored procedures use
the same steps as creating the Portal database above, only the database structure
is much simpler and this database will reside on our physical machine. Remember
that this database is stored on a local instance of SQL Server, so we have our full
set of features with this database (though the scripts were written with the simplest
features for ease):

/* Execute this line in the master database */
CREATE DATABASE [JupiterERP]

/* Execute this line in the master database */
CREATE LOGIN JupiterMotors WITH Password='P@ssword'

/* Execute this line in the JupiterERP database */
CREATE USER JupiterMotors FROM LOGIN JupiterMotors

Introduction to SQL Azure

[72]

The creation script for the tables and keys follows (remember to connect directly
to the local instance of our JupiterERP database to run this script and the stored
procedures script):

/**

* This section below will create our tables for the JupiterERP
 database
* -Customers table
* This table will hold all of our Customer address
 information
* -OrderHeaders table
* This table will hold our Order Header information
* -OrderDetails table
* This table will hold our Order Detail information

************/

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[Customers](
 [CustomerID] [int] IDENTITY(1,1) NOT NULL,
 [CustomerName] [varchar](50) NOT NULL,
 [CustomerAddress1] [varchar](50) NOT NULL,
 [CustomerAddress2] [varchar](50) NULL,
 [City] [varchar](50) NOT NULL,
 [StateProv] [varchar](50) NOT NULL,
 [PostalCode] [varchar](50) NOT NULL,
 CONSTRAINT [PK_Customers] PRIMARY KEY CLUSTERED
(
 [CustomerID] ASC
))

CREATE TABLE [dbo].[OrderHeaders](
 [OrderHeaderID] [int] IDENTITY(1,1) NOT NULL,
 [OrderDate] [smalldatetime] NOT NULL,
 [RequestedDate] [smalldatetime] NOT NULL,
 [CustomerPO] [varchar](50) NOT NULL,
 [CustomerID] [int] NOT NULL,
 CONSTRAINT [PK_OrderHeader] PRIMARY KEY CLUSTERED
(

Chapter 5

[73]

 [OrderHeaderID] ASC
))

CREATE TABLE [dbo].[OrderDetails](
 [OrderDetailID] [int] IDENTITY(1,1) NOT NULL,
 [OrderHeaderID] [int] NOT NULL,
 [ItemNumber] [int] NOT NULL,
 [ItemDescription] [nchar](10) NULL,
 [QuantityOrdered] [int] NOT NULL,
 CONSTRAINT [PK_OrderDetails] PRIMARY KEY CLUSTERED
(
 [OrderDetailID] ASC
))
GO

/**

* This section below will create our foreign keys for the JupiterERP
 database
* -FK_OrderDetails_OrderHeaders
* Links OrderDetails to OrderHeaders using
OrderHeaderID Primary Key
* -FK_OrderHeaders_Customers
* Links OrderHeaders to Customers using CustomerID
Primary Key

************/

ALTER TABLE [dbo].[OrderDetails] WITH CHECK ADD CONSTRAINT [FK_
OrderDetails_OrderHeaders] FOREIGN KEY([OrderHeaderID])
REFERENCES [dbo].[OrderHeaders] ([OrderHeaderID])
GO
ALTER TABLE [dbo].[OrderDetails] CHECK CONSTRAINT [FK_OrderDetails_
OrderHeaders]
GO

ALTER TABLE [dbo].[OrderHeaders] WITH CHECK ADD CONSTRAINT [FK_
OrderHeaders_Customers] FOREIGN KEY([CustomerID])
REFERENCES [dbo].[Customers] ([CustomerID])
GO
ALTER TABLE [dbo].[OrderHeaders] CHECK CONSTRAINT [FK_OrderHeaders_
Customers]
GO

Introduction to SQL Azure

[74]

The last thing to do is to create the stored procedures to add a customer, an order
header, and the order detail:

/**

* This section below will create our stored procedures in the
* JupiterERP database. There is one stored procedure for creating
* the new customer placing the order, one to insert the Order
Header, and one
* that will insert each line item on the order into the Order
Details table.

************/

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[NewCustomer]
@Name varchar(50),
@Address1 varchar(50),
@Address2 varchar(50),
@City varchar(50),
@StateProv varchar(50),
@PostalCode varchar(50)
AS
BEGIN
 SET NOCOUNT ON;

 INSERT INTO Customers(CustomerName, CustomerAddress1,
 CustomerAddress2, City, StateProv, PostalCode)
 VALUES(@Name, @Address1, @Address2, @City, @StateProv,
 @PostalCode)

 SELECT SCOPE_IDENTITY()

END
GO

CREATE PROCEDURE [dbo].[NewOrderHeader]
@OrderDate datetime,

Chapter 5

[75]

@RequestedDate datetime,
@CustomerPO varchar(50),
@CustomerID int

AS
BEGIN
 SET NOCOUNT ON;

 INSERT INTO OrderHeaders(OrderDate, RequestedDate, CustomerPO,
 CustomerID)
 VALUES (@OrderDate, @RequestedDate, @CustomerPO, @CustomerID)

 SELECT SCOPE_IDENTITY()

END
GO

CREATE PROCEDURE [dbo].[NewOrderDetail]
@OrderHeaderID int,
@ItemNumber varchar(50),
@ItemDescription varchar(50),
@QuantityOrdered int

AS
BEGIN
 SET NOCOUNT ON;

INSERT INTO OrderDetails(OrderHeaderID, ItemNumber, ItemDescription,
QuantityOrdered)
VALUES(@OrderHeaderID, @ItemNumber, @ItemDescription,
 @QuantityOrdered)

END
GO

At this point, our databases have been created, our logins and users have been
created, and the database tables, keys, and stored procedures exist in the databases.
We're now ready for the next step!

Introduction to SQL Azure

[76]

Summary
In this chapter, we gained an overview of SQL Azure, and examined some of the
similarities and differences between SQL Server 2008 and SQL Azure. We also
walked through setting up our SQL Azure service. Because SQL Azure is a managed
service, a number of SQL Server commands and functions are not available to
us, and many of the administrative functions have also been removed. There are
considerations developers and administrators alike must make when building or
migrating an application to Azure. Finally, we provisioned and created our local
JupiterERP database and portal database in SQL Azure.

Azure Blob Storage
In movie mythology, blobs are ever-growing creatures that consume everything
in their path. In Azure, blobs just seem to be the same. A blob, or binary large
object, is an Azure storage mechanism with both streaming and random read/write
capabilities. Blob Storage is accessed via a .NET client library or a rich REST API, and
libraries for a number of languages, including Ruby and PHP, are available. With
the addition of the Windows Azure Content Delivery Network, blobs have become
a very functional and powerful storage option.

Blobs in the Azure ecosystem
Blobs are one of the three simple storage options for Windows Azure, and are
designed to store large files in binary format (refer to the Windows Azure diagram
in Chapter 2, The Nickel Tour of Azure, for a reminder of how blobs fit into the Azure
ecosystem). There are two types of blobs—block blobs and page blobs. Block blobs are
designed for streaming, and each blob can have a size of up to 200 GB. Page blobs are
designed for read/write access and each blob can store up to 1 TB each. If we're going
to store images or video for use in our application, we'd store them in blobs. On our
local systems, we would probably store these files in different folders. In our Azure
account, we place blobs into containers, and just as a local hard drive can contain any
number of folders, each Azure account can have any number of containers.

Azure Blob Storage

[78]

Similar to folders on a hard drive, access to blobs is set at the container level, where
permissions can be either "public read" or "private". In addition to permission
settings, each container can have 8 KB of metadata used to describe or categorize it
(metadata are stored as name/value pairs). Each blob can be up to 1 TB depending
on the type of blob, and can also have up to 8 KB of metadata. For data protection
and scalability, each blob is replicated at least three times, and "hot blobs" are served
from multiple servers. Even though the cloud can accept blobs of up to 1 TB in size,
Development Storage can accept blobs only up to 2 GB. This typically is not an issue
for development, but still something to remember when developing locally.

Page blobs form the basis for Windows Azure Drive—a service that allows Azure
storage to be mounted as a local NTFS drive on the Azure instance, allowing existing
applications to run in the cloud and take advantage of Azure-based storage while
requiring fewer changes to adapt to the Azure environment. Azure drives are
individual virtual hard drives (VHDs) that can range in size from 16 MB to 1 TB.
Each Windows Azure instance can mount up to 16 Azure drives, and these drives
can be mounted or dismounted dynamically. Also, Windows Azure Drive can be
mounted as readable/writable from a single instance of an Azure service, or it can
be mounted as a read-only drive for multiple instances. At the time of writing, there
was no driver that allowed direct access to the page blobs forming Azure drives,
but the page blobs can be downloaded, used locally, and uploaded again using the
standard blob API.

Creating Blob Storage
Blob Storage can be used independent of other Azure services, and even if we've
set up a Windows Azure or SQL Azure account, Blob Storage is not automatically
created for us. To create a Blob Storage service, we need to follow these steps:

1. Log in to the Windows Azure Developer portal and select our project.
2. After we select our project, we should see the project page, as shown in the

next screenshots:

Chapter 6

[79]

3. Clicking the New Service link on the application page takes us to the service
creation page, as shown next:

4. Selecting Storage Account allows us to choose a name and description
for our storage service. This information is used to identify our services
in menus and listings.

Azure Blob Storage

[80]

5. Next, we choose a unique name for our storage account. This name must
be unique across all of Azure—it can include only lowercase letters and
numbers, and must be at least three characters long.

6. If our account name is available, we then choose how to localize our data.
Localization is handled by "affinity groups", which tie our storage service
to the data centers in different geographic regions. For some applications,
it may not matter where we locate our data. For other applications, we may
want multiple affinity groups to provide timely content delivery. And for a
few applications, regulatory requirements may mean we have to bind our
data to a particular region.

Chapter 6

[81]

7. Clicking the Create button creates our storage service, and when complete,
a summary page is shown. The top half of the summary page reiterates the
description of our service and provides the endpoints and 256-bit access
keys. These access keys are very important—they are the authentication
keys we need to pass in our request if we want to access private storage or
add/update a blob.

8. The bottom portion of the confirmation page reiterates the affinity group the
storage service belongs to. We can also enable a content delivery network
and custom domain for our Blob Storage account.

Azure Blob Storage

[82]

9. Once we create a service, it's shown on the portal menu and in the project
summary once we select a project.

10. That's it! We now have our storage services created.

We're now ready to look at blobs in a little more depth.

Windows Azure Content Delivery
Network
Delivering content worldwide can be a challenge. As more and more people gain
access to the Internet, more and more people (hopefully) will be visiting our site. The
ability to deliver content to our visitors is limited by the resources we've used for our
application. One way of handling bottlenecks is to move commonly used files (such
as CSS or JavaScript libraries) or large media files (such as photos, music, and videos)
to another network with much greater bandwidth, and with multiple locations
around the world. These networks are known as Content Delivery Networks
(CDNs), and when properly utilized to deliver content from a node geographically
closer to the requester, they can greatly speed up the delivery of our content.

The Windows Azure Content Delivery Network is a service that locates our publicly
available blobs in data centers around the world, and automatically routes our users'
requests to the geographically closest data center. The CDN can be enabled for any
storage account, as we saw in the service setup.

To access blobs via the CDN, different URL is used than for standard access.
The standard endpoint for our sample application is http://jupitermotors.
blob.core.windows.net. When we set up CDN access, our service is assigned a
GUID, and CDN access is through a generated URL, which will be assigned in our
Windows Azure Developer portal when we enable the feature. A custom domain can
also be used with the CDN.

Chapter 6

[83]

Blobs are cached at the CDN endpoints for a specified amount of time (default, 72
hours). The time-to-live (TTL) is specified as the HTTP Cache-Control header. If a
blob is not found at the geographically closest data center, the blob is retrieved from
the main Blob Storage and cached at that data center for the specified TTL.

Blob Storage Data Model
The Blob Storage Data Model is a simple model consisting of four different
components: a storage account, containers, blobs, and blocks or pages. A container is
a way to organize blobs. Think of a container as a "folder" that can hold many "files".
These "files" are blobs. A blob consists of one or more blocks or pages of data. In
the following diagram, we can see a visual representation of a container, blobs, and
blocks. Our storage account can hold an unlimited number of containers, and each
container can hold an unlimited number of blobs. Each blob, as mentioned above,
can be either 200 GB or smaller (block blob) or up to 1 TB (page blob). Each block in
a block blob can be up to 4 MB in size, which implies that a 200 GB block blob will
contain a tremendous number of blocks.

Blob Storage
There are two mechanisms for accessing Blob storage—the REST-ful Blob Storage
API and a .NET client library called the StorageClient Library. Documentation for
the REST-ful API can be found at http://msdn.microsoft.com/en-us/library/
dd135733.aspx, whereas the StorageClient Library documentation can be found at
http://msdn.microsoft.com/en-us/library/ee741723.aspx.

Azure Blob Storage

[84]

Representational State Transfer
What is REST? REST stands for Representational State Transfer, and even if the
term is not familiar, the concepts probably are. REST architecture forms the basis
for the World Wide Web. In REST, a client sends a document to a server, called
as request, and the server replies with another document, called as response.
Both the request and the response documents are "representations" of either
the current or intended "state". The state in this context is the sum total of the
information on the server. A request to list all the posts in a forum receives a
response describing the current state of the forum posts. A request containing a
reply to one of those posts represents the intended state, as it changes the forum's
information. Systems built on these concepts and utilizing a set of HTTP verbs
are described as REST-ful. For more information on REST, a good starting point
is http://en.wikipedia.org/wiki/Representational_State_Transfer.

The Blob Storage API
Now that we have an idea of what REST is, we now understand why it's important
that the Blob Storage API is built on a "RESTful" interface. The Blob Storage API uses
the HTTP/REST operations PUT, GET, DELETE, and HEAD. These operations perform
the following functions:

PUT: This command will insert a new object, or if the object already exists,
it will overwrite the old object with the new one.
GET: This command will retrieve an object.
DELETE: This command will delete an object.
HEAD: This command will retrieve properties and metadata.

Using the Blob Storage API, we can work with containers, blobs, and blocks via
HTTP/REST operations. As we examine the API in the coming sections, we will
notice that many of the operator/request URI combinations are similar. The magic
happens with the request headers and request bodies. In Chapter 9, Web Role, when
we discuss the Azure web role and build the front-end application, we will take a
deeper look at some of these operator/request URIs.

Working with containers using the REST
interface
We are able to perform a number of actions with containers using the Blob Storage
API. Containers help us to:

•

•

•

•

Chapter 6

[85]

List all containers for our storage account
Create new containers
Retrieve all container properties and metadata
Set metadata on containers
Get and set the access control list (ACL) for a container
Delete a container (and its contents)

Working with containers using the
StorageClient library
The CloudBlobClient class (http://msdn.microsoft.com/en-us/library/
ee758637.aspx) is the class used to interact with blob containers. The
CloudBlobContainer class (http://msdn.microsoft.com/en-us/library/
microsoft.windowsazure.storageclient.cloudblobcontainer_members.aspx)
acts on a single container.

Parameter REST API Client Library
List
Containers

Using the GET operator, we can retrieve a list of
containers for our storage account. The request URI
is in the form http://<account>.blob.core.
windows.net/?comp=list, where <account>
will be replaced with our account name. The
request will retrieve the entire list of containers (up
to 5,000 items at a time). If a storage account has
more than 5,000 containers, a continuation token
will be returned, so the full list can be paginated
by making subsequent requests and including this
continuation token.

The CloudBlobClient.
ListContainers method
(http://msdn.microsoft.
com/en-us/library/
microsoft.windowsazure.
storageclient.
cloudblobclient.
listcontainers.aspx) is
used to list the containers in a
storage account. The overloads
ListContainers(<prefix>)
is used to list only the containers
whose names begin with the
prefix, and ListContainers(<
prefix>,<details>) is used
to specify the level of detail to be
returned. Detail options are passed
as ContainerListingDetails,
and the options are All, Metadata,
and None.

Create
Containers

Using the PUT operator, we can create a
new container for our storage account.
The request URI is in the form http://
<account>.blob.core.windows.net/
<container>?restype=container where
<account> will be replaced with our account
name and <container> is the name of the new
container. If the container already exists, the
operation will fail.

The CloudBlobContainer.
Create or
CloudBlobContainer.
CreateIfNotExists methods
are used to create a container in
our storage account.

•
•
•
•
•
•

Azure Blob Storage

[86]

Parameter REST API Client Library
Get
Container
Properties

Using the GET/HEAD operator, we can
retrieve all the user-defined metadata and
system properties for a specified container.
The request URI is in the form http://
<account>.blob.core.windows.net/
<container>?restype=container where
<account> will be replaced with our account
name and <container> is the name of the
container.

In addition to a container's metadata, there are a
series of properties such as the Last-Modified date
and ETag. Retrieving the properties of a container
returns both the system properties and any
metadata.

The CloudBlobContainer.
FetchAttributes method
is used to query the system
properties and container metadata.
The properties are then accessed
via the CloudBlobContainer.
Properties property.

Get
Container
Metadata

Using the GET/HEAD operator, we can retrieve
only the user-defined metadata for a specified
container. The request URI is in the form
http://<account>.blob.core.
windows.net/<container>
?restype=container&comp=
metadata where <account> will be
replaced with our account name and
<container> is the name of the container.

Each container can have up to 8 KB of metadata
associated with it. We can use this metadata for
a variety of purposes such as categorizing the
contents of the container (Christmas videos, photos
of RVs, and so on). Getting the metadata returns
only the metadata.

After calling the
CloudBlobContainer.
FetchAttributes method,
metadata are accessed via
the CloudBlobContainer.
Metadata property.

Set
Container
Metadata

Using the PUT operator, we can set one or
more of the user-defined metadata for a specified
container. The request URI is in the form
http://<account>.blob.core.
windows.net/<container>
?restype=container&comp=
metadata where <account> will be
replaced with our account name and
<container> is the name of the container.

The CloudBlobContainer.
SetMetadata method is used to
add metadata to a container.

Chapter 6

[87]

Parameter REST API Client Library
Get
Container
ACL

Using the GET/HEAD operator, we can get the
access control list for a specified container.
The request URI is in the form http://
<account>.blob.core.windows.net/
<container>?restype=container&comp=acl
where <account> will be replaced with our
account name and <container> is the name of the
container.
There are three levels of permissions that can be
applied to a container:

Full public read, in which both container
and blob data can be read by anonymous
users
Public read access for blobs only, in which
only blob data can be read by anonymous
users
No public read access

The permissions on a container are known as the
Access Control List, or ACL, a term also applied to
folder permissions on the Windows OS.

•

•

•

The CloudBlobContainer.
GetPermissions is used to
retrieve the container's ACL.

Set
Container
ACL

Using the PUT operator, we can set the
access control list for a specified container.
The request URI is in the form http://
<account>.blob.core.windows.net/
<container>?restype=container&comp=acl
where <account> will be replaced with our
account name and <container> is the name
of the container.

The CloudBlobContainer.
SetPermissions method is
used to set a container's ACL.

Delete
Container

Using the DELETE operator, we can mark the
container to be deleted. The container is not deleted
right away, but later during a garbage cleanup
process. The request URI is in the form http:/
/<account>.blob.core.windows.net/
<container>?restype=container where
<account> will be replaced with our account
name and <container> is the name
of the container.

The CloudBlobContainer.
Delete method is used to delete
a container.

Azure Blob Storage

[88]

Working with blobs
Working with blobs using the REST interface is as easy as working with containers.
The same PUT/GET/DELETE/HEAD operators are used with slightly different request
URIs. In the client library, the CloudBlob class (http://msdn.microsoft.com/en-
us/library/ee773197.aspx) is used to interact with individual blobs. Another
useful class for working with blobs is the BlobRequest class (http://msdn.
microsoft.com/en-us/library/microsoft.windowsazure.storageclient.
protocol.blobrequest.aspx). The BlobRequest class has many similar methods
to the CloudBlob class, and also includes the methods for working with blocks in
block blobs.

Parameter REST API Client Library
List Blobs Using the GET operator, we can retrieve a list of

blobs in a container. The request URI is in the form
http://<account>.blob.core.windows.net/
<container>?restype=container&comp=list,
where <account> will be replaced with our account
name and <container> is the name of the container
we're retrieving the list from. The request will retrieve
the entire list of blobs in <container> (up to 5,000
items at a time). If a container has more than 5,000 blobs,
a continuation token will be returned. The full list can
be paginated by including the continuation token in
subsequent requests.

The
CloudBlobContainer.
ListBlobs method is
used to return a list of all
blobs in a container.

Create Blob Using the PUT operator, we can create a new blob
in a container. The request URI is in the form
http://<account>.blob.core.windows.net/
<container>/<blob> where <account> will be
replaced with our account name, <container> is the
name of the container, and <blob> is the name of the
blob.

Note that all blobs in a container must have a unique
name for that container! Also, creating a blob doesn't
actually "create" the blob; it just reserves space for
the blob. The blob isn't created until its contents are
uploaded to the blob.

A blob is not created
until its contents are
uploaded. For smaller
files, the simplest method
is to use the CloudBlob.
UploadFile method. For
large page or block blobs,
the methods for creating a
blob differ.

Get Blob Using the GET operator, we can retrieve a blob, blob
properties, and metadata in a container. The request
URI is in the form http://<account>.blob.core.
windows.net/<container>/<blob> where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob.

To retrieve a specific
blob, we use one of the
download methods
such as CloudBlob.
DownloadToFile.

Chapter 6

[89]

Parameter REST API Client Library
Get Blob
Properties

Using the HEAD operator, we can retrieve a blob's
properties and metadata in a container. The request
URI is in the form http://<account>.blob.core.
windows.net/<container>/<blob> where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob. This will not retrieve the blob
contents, only the properties and metadata.

For retrieving properties
and metadata, we
call CloudBlob.
FethAttributes,
and access the specific
information we want via
CloudBlob.Properties
and CloudBlob.
Metadata.

Set Blob
Properties

Using the PUT operator, we can set a blob's properties
in a container. The request URI is in the form
http://<account>.blob.core.windows.net/
<container>/<blob>?comp=properties where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob.

To set a blob's properties,
we call CloudBlob.
SetProperties.

Get Blob
Metadata

Using the GET/HEAD operator, we can retrieve a blob's
metadata in a container. The request URI is in the
form http://<account>.blob.core.windows.
net/<container>/<blob>?comp=metadata where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob.

For retrieving properties
and metadata, we
call CloudBlob.
FethAttributes,
and access the specific
information we want via
CloudBlob.Properties
and CloudBlob.
Metadata.

Set Blob
Metadata

Using the PUT operator, we can set a blob's metadata
in a container. he request URI is in the form
http://<account>.blob.core.windows.net/
<container>/<blob>?comp=metadata where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob.

To add metadata to a blob,
we call the CloudBlob.
SetMetadata method.

Delete Blob Using the DELETE operator, we can mark a blob to be
deleted. The blob is not deleted right away, but later
during a garbage cleanup process. The request URI is in
the form http://<account>.blob.core.windows.
net/<container>/<blob> where <account> will
be replaced with our account name, <container> is
the name of the container, and <blob> is the name of
the blob.

In the client library, to
delete a specific blob, we'd
call CloudBlob.Delete

Azure Blob Storage

[90]

Parameter REST API Client Library
Lease Blob The request URI is in the form http://<account>.

blob.core.windows.net/<container>/
<blob>?comp=lease where <account> will be
replaced with our account name, <container> is the
name of the container, and <blob> is the name of the
blob. The action is passed in the request header in the
x-ms-lease-action property.

Note that a lease on a blob is a lock, to make sure only
one process can make changes to the blob at any given
time. Leases are for one minute, which can be renewed.
We can acquire, renew, release, and break a lease using
the API. The difference between releasing a lease and
breaking it is that releasing a lease will make the blob
available immediately, where breaking it will allow the
blob to be modified once the lease expires.

There is currently no way
to manage leases via the
client library. Steve Marx,
from the Azure Team,
has an example of how to
manage leases on his blog
at http://blog.smarx.
com/posts/leasing-
windows-azure-blobs-
using-the-storage-
client-library.

Snapshot Blob Using the PUT operator, we can create a read-only
copy of a blob in a container, called a snapshot. The
request URI is in the form http://<account>.
blob.core.windows.net/<container>/
<blob>?comp=snapshot where <account> will be
replaced with our account name, <container> is the
name of the container, and <blob> is the name of the
blob. This method is useful as a form of version control,
to provide history of edits, or as a recovery strategy
where blobs are frequently edited.

In the client library,
we create a snapshot
using the CloudBlob.
CreateSnapshot
method.

Copy Blob Using the PUT operator, we can copy a blob in a
container to a different location in the storage account.
The request URI is in the form http://<account>.
blob.core.windows.net/<container>/<blob>
where <account> will be replaced with our account
name, <container> is the name of the container, and
<blob> is the name of the blob.

To copy a blob in
the client library, we
call CloudBlob.
CopyFromBlob.

Create Blocks Using the PUT operator, we can create a new
block to be committed as part of a blob. The
request URI is in the form http://<account>.
blob.core.windows.net/<container>/
<blob>?comp=block&blockid=id where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob. The blockid is a unique name
for the block, and you would replace the id with the
block name following the blockid= expression.

In the client library, we call
BlobRequest.PutBlock
to upload a block.

Chapter 6

[91]

Parameter REST API Client Library
Create Block
List

Using the PUT operator, we create a list of blocks
that a blob consists of. The request URI is in the form
http://<account>.blob.core.windows.net/
<container>/<blob>?comp=blocklist where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob.

To upload a block list
using the client library,
we use BlobRequest.
PutBlockList.

Get Block List Using the GET operator, we retrieve a list of blocks
that a blob consists of. The request URI is in the form
http://<account>.blob.core.windows.net/
<container>/<blob>?comp=blocklist where
<account> will be replaced with our account name,
<container> is the name of the container, and <blob>
is the name of the blob.

To get the block list, we
call the BlobRequest.
GetBlockList method.

Summary
Blob Storage is an amazing storage mechanism in Windows Azure. Between the
scalability factors, authorization security settings, and the Blob Storage API for easy
access, this truly is a long-term solution for anyone wishing to utilize Windows
Azure for any application or service. In this chapter, we gained an overview of the
two types of blobs, created a storage service for our project, and examined the API
and client library used to interact with containers and blobs. As mentioned, we will
begin to use Blob Storage and the Blob Storage API in Chapter 9 of this book when
we build the front-end of our application for "Spee-D Delivery" with "Jupiter Motors"
web role.

Azure Table Storage
Another storage option in Windows Azure is Table Storage. In this chapter,
we'll examine Table Storage and the Table Services API in further detail. Table
Storage is a persistent repository that can scale to humongous proportions (unlike
SQL Azure, which is limited to gigabytes per database). It is accessible by both
REST—the Windows Azure Management Library and client libraries for
ADO.NET Data Services.

In this chapter, we'll:

Compare Table Storage with relational database tables
Discuss some pros and cons of Table Storage
See how to access Table Storage via REST or a .NET client library.
Consider error handling when working with Table Storage

Table Storage versus database tables
For developers used to working with a relational database, Table Storage may seem
like a step backwards. After further examination, we may begin to see Table Storage as
a very powerful and flexible technology. Table Storage is not a relational mechanism,
but simple relations can be maintained in application code. For developers interested
in an object-based database, Table Storage may be closer to what is desired.

Tables in databases and Table Storage both have table names. Tables in Table
Storage are composed of entities, which are similar to rows in a database table.
Each entity has:

A PartitionKey that is used to group entities onto the same partition
A RowKey that uniquely identifies a row within a partition
A system-maintained Timestamp
Properties that are similar to columns in a database table

•
•
•
•

•
•
•
•

Azure Table Storage

[94]

Properties are stored and retrieved as <name,value> pairs. The PartitionKey has a
very important use. As the Azure Fabric optimizes itself, tables will be moved from
disk partition to partition, and even split across partitions. The PartitionKey is used
to make sure all entities that belong together are kept together, thereby increasing
the performance of the table. The PartitionKey and RowKey together make a primary
key for the table. It's important to understand PartitionKeys, and we are going to
cover them in further detail in the coming sections.

One of the biggest differences between Table Storage and a database table is the lack
of a fixed schema in Table Storage, as seen in the next diagram. In a database table,
there is a fixed schema with all rows having the same number of columns, and all
values in the same column having the same data type. By contrast, all entities have a
PartitionKey and a RowKey, but each can have a varying number of properties, and
properties with the same name can have values of different types.

Because Table Storage is not relational, there are no foreign key constraints—all
relations are "loose", and must be maintained by application logic. This adds some
additional development, along with introducing a great deal of flexibility in
the system.

At the most basic level, if a web application has drop-down lists for countries or
states, Table Storage is a perfect mechanism for holding this information. Countries
and states are small examples—Table Storage is optimized for thousands to millions
of entries. And tables are queryable via LINQ and ADO.NET Data Services, giving
them a database-like functionality. Another, larger example wouldbe to use Table
Storage as a repository for auto-complete suggestions, such as the auto-complete in
Google's search box.

A more complex use for Table Storage would be to serve as an object database. Each
table would contain a number of different objects, identified by their partition keys.
The RowKey would be used to identify property groups or sub-objects, and each
entity would be a property of the object. Specific objects can be retrieved by their
PartitionKey, specific property sets by the RowKey, and the object can be rehydrated
by application code.

Chapter 7

[95]

In the example shown in the preceding screenshot, the Company property contains a
pipe-delimited string as its value. Retrieving the individual values is not a standard
operation—this string would need to be split on the client side before the individual
properties can be accessed. But using this technique allows for a flexible data storage
schema. While using a strategy like this gives us a great deal of flexibility, it can place
a burden on application development and maintenance, as we would essentially be
building our own object-relational mapping (ORM) engine.

Some of the good stuff
One of the biggest features of Table Storage may be its size. Table Storage is scalable,
and tables can be massive, occupying terabytes of space and containing billions of
entities. There are no set limits as to the number of tables or the size of each table.
Naturally, all of this data will not exist on a single node. Tables will be spread out
over numerous servers, and "hot partitions" will be load balanced and located for
efficient delivery. Table Storage is persistent, so if we turn our Azure instance off,
our data will be restored when we turn our instance back on.

There are a couple data access options for Table Storage too. We can access tables
directly via a REST API, or we can query a table via a subset of LINQ and a client
library for ADO.NET Data Services.

As with other forms of data access, table queries can timeout. Each table query is
limited to 1,000 results or 5 seconds of execution, whichever comes first. However,
instead of throwing an error when an execution maximum is reached, a partial
resultset is returned with a continuation token. Passing the continuation token
back in a subsequent request enables the query to start again from that point.

Updates and deletes are performed with optimistic concurrency. This means it's up
to us to determine if we should preserve any changes made prior to our update, or
to just overwrite these changes.

Azure Table Storage

[96]

Limitations of Table Storage
There are some limitations to using Table Storage. To start with, each entity can
have a maximum size of 1 MB. The PartitionKey and RowKey are limited to string
data type, and have a maximum size of 1 KB each; however, when accessing entities
via REST, there is a practical limit on the length of the PartitionKey and RowKey.
This stems from a limitation in HTTP.SYS, the "listener" for web requests, and the
HTTP/1.1 protocol, which limits URI length to 260 characters. This is not the entire
URL, merely the parameter portion of the URL. Given the following example URL,
the portion in bold cannot be longer than 260 characters:

http://<account>.table.core.windows.net/
<tablename>(PartitionKey="keyvalue",RowKey="keyvalue")

There are a maximum number of 255 properties per entity—252 user-defined
properties and three fixed properties (PartitionKey, RowKey, and Timestamp).
Property names can be repeated from entity to entity, but a property name must be
unique within an entity. The entity Timestamp is read only, and it is recommended
not to build applications that access this property as its use may change in future
versions of Azure Table Storage.

Because there are no keys to link tables together, the ADO.NET Data Services
methods that deal with links are unavailable to use, including AddLink, DetachLink,
and SetLink. All referential integrity must be handled in the application code.

There is also no way to retrieve a specific property directly from the table. Instead,
we must retrieve the complete entity and parse what we want in our code. Likewise,
we cannot update or delete a single property. Instead, a complete entity is retrieved
and parsed, properties are changed or removed, and the complete entity is rewritten
to the table.

Unlike a database, our table data cannot be sorted or grouped before being returned
to us. In SQL Server, it would be trivial to return the top 10 customers based on total
sales. In Table Storage, this is not possible natively. Our application would need to
retrieve all the customers, calculate the total sales, and then sort the list.

Adding Table Storage to an Azure
account
By default, there are no services added to Azure accounts—these must be created
after the account has been set up. When a simple storage service is created (as we
did in Chapter 6, Azure Blob Storage), it includes all three storage mechanisms.

Chapter 7

[97]

After a storage service has been added, the endpoints for all three services are
displayed together, as shown in the following screenshot:

Accessing Table Storage
For security purposes, each request to Table Storage must be authenticated using the
256-bit shared keys created when we added the storage service. Table Storage can be
directly accessed via REST, or queried using a subset of LINQ. The REST interface
allows languages such as Java, PHP, and Ruby to consume Table Storage, while
client libraries for ADO.NET Data Services are limited to the .NET languages.

Each request made via the REST API has a different set of required headers, and the
body of each request is Atom format. Queries made via the REST API will return
either 1,000 records, or run for 5 seconds (a total of 30 seconds from scheduling/
processing to completion). If a query crosses these boundaries, a continuation
token will be returned, which can be used in a subsequent request. Responses
from the REST API are in AtomPubformat (http://en.wikipedia.org/wiki/
Atom_(standard)). The ADO.NET Data Services client libraries do not have
query boundaries.

An important API header property is x-ms-version. Just as .NET allows multiple
versions of the same libraries to be coexist in the Global Assembly Cache (GAC),
multiple versions of the Table Storage API will also coexist. This is an optional
property, but if this property is left blank, the default library will be the most basic
library available. If we are targeting specific API features in our application, or want
to ensure no part of our application will break when the API is updated, we need to
include this property. The value is a date stamp, so the header property for the April
2009 API would read x-ms-version: 2009-04-14.

Third-party products are being developed that allow us to work directly with tables
in a more friendly way than coding. Two such examples are TableXplorer found at
http://clumsyleaf.com/products/tablexplorer, and MyAzureStorage found at
https://www.myazurestorage.com/.

Azure Table Storage

[98]

Working with tables
The client class for working with tables via .NET and the Azure Managed Library
is Microsoft.WindowsAzure.StorageClient.CloudTableClient. The methods
listed in the following table are methods of this class, unless specified otherwise. The
documentation for this class can be found at http://msdn.microsoft.com/en-us/
library/microsoft.windowsazure.storageclient.cloudtableclient.aspx.

Documentation for the REST library can be found at http://msdn.microsoft.com/
en-us/library/dd179423.aspx. The CloudTableClient class is more user-friendly
than the REST API, but the REST API can accomplish all the necessary tasks.

The base URI for accessing tables via the REST API is http://<myaccount>.table.
core.windows.net/Tables. The different HTTP verbs (POST, GET, DELETE) are used
to determine the action, and parameters (such as the table name) are specified in the
request body.

Table names must follow a naming convention:

Names can only be alphanumeric
Length must be between 3 to 63 characters
The name cannot begin with a number
Names are case insensitive

Operation REST API Client Library
Creating
tables

We use the POST method to the
base URI (shown above) to create
a new table. The table name is
in <TableName> element of the
request body.

The CreateTable(<tablename>)
method creates a blank table, but will fail
if the table already exists. CreateTable
IfNotExist(<tablename>)will create
a blank table only if it does not exist.
If we want our tables to be based on a
class in our application, we can use the
CreateTablesFromModel method.
If we want or need to create
tables asynchronously, we can
use the BeginTableCreate or
BeginCreateTableIfNotExists
method. Each of these have a corresponding
Endnd method as well.l.

Querying a
list of tables

Using the GET method, we can
retrieve a list of tables in our
storage account. There is no
request body for this operation.

The ListTables method returns a list of
the tables in our storage account. If we want
to check for the existence of a particular
table, we can use the DoesTableExist
method. For asynchronous methods, we can
utilize the BeginListTablesSegmentedted
method.od.

•
•
•
•

Chapter 7

[99]

Operation REST API Client Library
Deleting a
table

The DELETE method is used to
delete a single table. The table
name is specified in the URI such
as http://<myaccount>.
table.core.windows.net/
Tables('<mytable>').

Not surprisingly, the DeleteTable
or DeleteTableIfExist
method is used to delete a table. For
asynchronmously deleting tables, we
utilize the BeginDeleteTable and
BeginDeleteTableIfExistt methods..

A note about table deletion: The actual table deletion is not
immediate. The table is merely marked for deletion and becomes
immediately inaccessible and the actual deletion occurs during garbage
collection at a later time. Depending on the size of the table, it can take
at least 40 seconds to delete the table. If we try to access a table while it
is being deleted, we'll receive a status code of 409 in the response, along
with an error message alerting that the table is being deleted.

Working with entities
The base URI for working with entities via the REST API is http://<account>.
table.core.windows.net/<tablename>. Note that the specific table name is
specified as part of the URI, unlike when we were working with tables. Entity
properties are specified in the request body, which is in Atom format. Response
bodies are also in Atom format. Documentation for entity operations via REST API
can be found at http://msdn.microsoft.com/en-us/library/dd179375.aspx.

When working through the .NET client library, we create a DataServiceContext
and use LINQ queries to perform the desired operation. Documentation for the
DataServiceContext can be found at http://msdn.microsoft.com/en-us/
library/system.data.services.client.dataservicecontext.aspx. At the time
of writing, LINQ is only partially supported by design. Information on writing LINQ
queries for table documentation can be found at http://msdn.microsoft.com/en-
us/library/dd894039.aspx.

It's not possible to work directly with individual properties. Instead, we must
retrieve the entity containing the property, manipulate the property, and then
update the entity back in the cloud.

Azure Table Storage

[100]

Operation REST API Client Library
Inserting
entities

The POST method is used to insert a new entity
into the table specified in the URI. Entity properties
are sent as child elements of the <properties>
element.

After we create a
DataServiceContext
to our table, we then use
the AddObject method
to add the entity, and the
SaveChanges method
to add the entity to the
table.

Querying
entities

Querying entities from a table uses the GET method.
The REST API has a simple query syntax, with either
the keys or a filter string passed in the URI. Because
values are passed in the querystring, the following
characters must be encoded before the filter string
is assembled: /, ?, :, @, &, =, + , and $. There is no
request body, as the entire request is contained in
the URI.
If the PaginationKey and RowKey are known, a
specific entity can be retrieved using the following
URI:
http://<account>.table.core.windows.net/
<table>(PartitionKey='<partitionkey>',
RowKey='<rowkey>').
If we want to retrieve a filtered list of entities, we can
use the following URI:
http://<account>.table.core.windows.
net/<table>()?$filter=<query-
expression>.
The $filteroption is part of the Atom Publishing
Protocol. More information on the $filter option
can be found at http://www.odata.org/docs/
[MC-APDSU].htm#_Toc246716529.
Recall that queries made via the REST API have
boundaries, and exceeding the boundaries will
result in a partial recordset and a continuation token
being returned. Documentation on pagination with
continuation tokens can be found at http://msdn.
microsoft.com/en-us/library/dd135718.
aspx.
The response body will include an opaque property
called an ETag. The ETag is considered opaqueETag. The ETag is considered opaque. The ETag is considered opaqueETag is considered opaque is considered opaque
because we cannot alter its value, nor should we
use this value as an identifier in our code (as there
is a date/time component, the ETag won't have aETag won't have a won't have a
consistent value). The ETag is used by the back-ETag is used by the back-
end of the REST API for concurrency when making concurrency when making
changes to entities.

When we query ADO.
NET Data Services
using LINQ via a client
library, there are no
query boundaries. The
query will return the
full recordset, and
will process up to
the configured global
timeout values. For
examples of LINQ
queries, refer to the
Writing LINQ Queries
section at http://
msdn.microsoft.
com/en-us/library/
dd894039.aspx.

Chapter 7

[101]

Operation REST API Client Library
Updating
entities: Azure
uses optimistic
concurrency,
and assumes
that updates
will not affect
each other, so
resources are
not locked.
This is similar
to optimistic
concurrency
in a database
system.

We use the PUT method to a specific entity,
as defined by the PartitionKey and RowKey
combination. The URI looks just the same as when
querying a specific entity:

http://<account>.<account>.account>.>..
table.core.windows.net/ows.net/
<table>(PartitionKey="<PartitionKey>",PartitionKey>",>",
RowKey="<RowKey>")")

The entity is contained in the request body. The
ETag returned as part of the initial query must also returned as part of the initial query must also
be returned for concurrency. If the ETagETag returned
matches the one on the entity, the update will be
performed. If the ETag does not match, this indicatesETag does not match, this indicates does not match, this indicatesthis indicates
that the entity was changed since it was retrieved, since it was retrieved,
and a Precondition Failed (response code 412)
will be returned. Should this happen, we need to
retrieve the latest version of the entity, perform
the modifications again, and resubmit the update.
An update can be forced by setting the If-Matchh
request header parameter to the wildcard character
"*".

The
DataServiceContext
maintains the EtagsEtagss
for us, and handles the
concurrency checking.
After retrieving the
entity or entities we
want to modify, we
make our changes
and then update the
data context using the
UpdateObject method.
The SaveChangess
method then propagates
the changes back to the
table..

Merging
Entities:
The merge
operation
is used to
combine the
properties
sent in the
request with
the properties
of a specific
entity. The
merge method
doesn't
remove
or change
properties,
it only adds
them to an
existing entity.

We use the MERGE method to combine two entities,
as defined by the PartitionKey and RowKey
combination. The URI looks just the same as when
querying a specific entity:

http://<account>.<account>.account>.>..
table.core.windows.net/ows.net/
<table>(PartitionKey="<PartitionKey>",PartitionKey>",>",
RowKey="<RowKey>")")

The request body should contain the properties to
be merged with the entity referenced in the URI.
Concurrency is handled the same as with updates—
an ETag is verified before an entity is merged, and if
the ETags match, the merge is performed.

As a merge is a form of
an update, we use the
same methods to merge
as we do to update.

Azure Table Storage

[102]

Operation REST API Client Library
Deleting
entities: As
with tables,
entity is first
marked for
deletion
and made
inaccessible,
then deleted
via garbage
collection at a
later time.

We use the DELETE method to remove a specific
entity, as defined by the PartitionKey and RowKey
combination. The URI looks just the same as when
querying a specific entity:

http://<account>.<account>.account>.>..
table.core.windows.net/ows.net/
<table>(PartitionKey="<PartitionKey>",PartitionKey>",>",
RowKey="<RowKey>")")

There is no request body, as the entity to be
removed is identified specifically in the querystring.
Concurrency is handled the same as with updates.
An ETag is checked prior to deletion and, if theETag is checked prior to deletion and, if the
ETags match, the entity is marked for deletion.s match, the entity is marked for deletion.

In our DataService
Context, we call the
DeleteObject method
to remove the entity
from the context, and
then the SaveChangess
method to propagate the
change to the cloud..

We must follow naming rules for naming properties. Property names can contain
alphanumeric characters and underscore, but cannot contain any extended or special
characters. Property values can be one of eight types, with limitations on value
ranges or size as described in the following table:

Value type Description
Binary A byte array, up to 64 KB in size. For large binary objects, consider

using Blob Storage and making a pointer to the blob a property value.

Boolean Boolean true/false value type.
DateTime UTC time. As this is a 64-bit value, the valid range of dates is 1/1/1601

to 12/31/9999.
Double A floating point value type. This is the only value type that can be

used for decimal numbers. This is a 64-bit type.

GUID A standard 128-bit globally unique identifier.
Int A 32-bit signed integer. It has values ranging from -2,147,483,648 to

2,147,483,647.
Int64 A 64-bit signed integer. It has values ranging from

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

String Encoded UTF-16. Strings can be of a maximum size of 64 KB.

If we are using LINQ to query Table Storage, the property values will be inferred
when the data are returned. However, if we are utilizing the REST API, property
values will be returned as string data, which we will need to convert to the proper
type in our application.

Chapter 7

[103]

Entity Group Transactions
The examples we have seen in earlier sections focus on operations against a single
entity. But what if we want to update all entities having the same partition key?
Using the client library, we can perform multiple entity transaction. In our data
context, we can queue a number of create/update/delete commands before
committing the changes with the SaveChanges method. There are a few rules and
limitations regarding Entity Group Transactions:

Each command group can contain up to 100 commands.
Operations can be performed only on entities with the same partition key.
As the name implies, the commands are executed as an all-or-nothing
transaction. If one command fails, the entire set is rolled back.
The entire group can be only 4 MB in size. This means insertions of a large
number of entities may need to be split into several groups.
An entity can appear only once. We cannot insert an entity at the beginning
of the group and then update it later.
Commands are executed in the order they were inserted into the group.
Concurrency is checked on the server. If an entity's ETags do not match,ETags do not match,s do not match,
no change will be made and the entire command group fails.

Entity Group Transactions can be performed with either the REST API or the .NET
Client Library. Microsoft's guidance on Entity Group Transactions can be found at
http://msdn.microsoft.com/en-us/library/dd894038.aspx.

Choosing a PartitionKey
In order to store the massive amount of data and quickly return queries against this
data, tables may be partitioned across thousands of nodes. This is where the partition
key fits into the storage scheme—all entities with the same partition key will be kept
together. Different entities from the same table may be served from different nodes,
but every entity with the same partition key will be served from the same node. In
our Contacts example we have seen earlier, all the BillGates records will be kept
together, and all of the SteveJobs records would be kept together, which may be a
different node than the BillGates records.

The Azure Fabric constantly monitors traffic to our partitions, and replicates active
partitions to multiple nodes in order to satisfy traffic demands. Selecting a partition
key becomes an important balance between query performance and response time.
The smaller our partitions, the more nodes our table can be spread over. However,
if we split apart entities that are frequently returned in the same resultset, we can
degrade query performance.

•
•
•

•

•

•
•

Azure Table Storage

[104]

Microsoft offers some advice on choosing a good PartitionKey:

Identify the properties that will most commonly be used in filters. This is our
list of important properties.
Narrow the list of important properties down to a couple of the most
important properties. These are our key candidates.
Rank the key candidates in order of importance. If there is only one key
property, that's our PartitionKey. If there are two, they should become our
PartitionKey and RowKey. If there are more than two, the key properties can
be concatenated into single keys with composite values.
If the PartitionKey cannot be guaranteed to be unique, add a unique
identifier to the key.
Finally, a reality check—is the chosen PartitionKey likely to result in entities
that are too large or too small?

Final confirmation of a good key choice will come by choosing a sample dataset,
performing stress tests on our table, and then tweaking the PartitionKey if necessary.

Exception handling
Designing a robust application means handling the exceptions and errors that may
arise at regular intervals. The following sections cover some of the more common
categories of exceptions that may be encountered. How these exceptions are dealt
with depends on the design and purpose of the application. Exception handling is
entirely in the hands of the application developer.

Retry on exceptions
If the data matters, our application should retry the operation when the response
code indicates something other than success. For applications with an end user, it
may be sufficient to guide the user through a series of steps to retry the operation.
For unattended applications, local retry queues, event logs/notifications, and
increasing times between attempts may need to be implemented.

Network issues and connections being closed can result in an operation failing to
reach the server. And although these should be rare, timeout exceptions can occur
while an entity is being updated or propagated. The time interval between attempts
should be increased if these errors occur multiple times.

Not every exception should have a retry. If we're attempting to delete an entity, and
we receive a response that the entity does not exist, there is no need to reattempt
the deletion.

•

•

•

•

•

Chapter 7

[105]

Exceptions on retry
It's very possible that a server-side operation may succeed, but a network or
timeout error prevents proper notification of success. A retry will then result in
an error message that indicates the first operation was successful. For instance, if
we successfully insert an entity, and a network timeout results in our application
retrying the operation, we'll receive an entity already exists error. It would not
be a good idea to retry the insertion in this circumstance because we'll be in a
never-ending loop. One way to handle this situation gracefully is to query the
table before an insert is attempted, to make sure the entity does not already exist.

Concurrency conflicts
In update and delete operations, an ETag mismatch will result in a Precondition
Failed response. In this situation, we need to either retrieve the updated entity,
make our modification, and then attempt the update again, or cancel our
update altogether.

Table errors and HTTP response codes
When using the REST API, exception information is contained in two places. Each
table error is mapped to an HTTP status code in the header of the response. The
HTTP status codes are standard codes, and are not as informative as the table error
code in the response body. The header codes are useful for determining the result
of an operation, but the <ExceptionDetails> in the response body should be
manifested to the user, or written to the application logs.

The client library receives the more detailed message as part of the thrown exception.

Summary
In this chapter, we discussed some of the benefits and limitations of Table Storage.
We discussed ways to manipulate tables and entities with both the REST API and
the ADO.NET Data Services client library. With its massive scalability and powerful
access options, Table Storage can be a very useful part of an Azure application.

Queue Storage
Besides Blob Storage and Table Storage, Queue Storage is the third type of simple
storage option in Windows Azure. Queues are designed to be a reliable method
for front-end servers to asynchronously communicate with back-end servers.
Persistent queues provide a robust messaging system between the different tiers
of our application, and decoupling front-and back-end servers from one another
allows one end to scale independently of the other. As with Table and Blob Storage,
there is both a rich client library and REST API, which can be leveraged to access
Queue Storage.

In this chapter, we'll:

Learn what Azure Queue Storage is
Discuss why we would want to use a queue
See how to access Queue Storage via REST or a .NET client library.

The ins and outs of queues
Looking at the following diagram, we can see where Queue Storage fits in with the
rest of Windows Azure:

•
•
•

Queue Storage

[108]

As one of the three simple storage options, Queue Storage is created when a storage
service is added to an account. The Queue Storage endpoint is listed with the others
when we view a storage service, as shown here:

A single Azure account can have any number of queues. Each queue is composed of
messages, each of which carries the data or processing instructions that need to be
acted upon by the back-end servers (refer to the next diagram).

There is no enforced limit to the number of messages in a queue, although there is a
practical limit to the number of messages we'd want stacked up at any given time.
Messages with a long latency in the queue are an indication that either the back-end
processes need to be further optimized, or we need to scale out some additional
back-end servers.

Each message is simply an XML document, in Atom format; messages are limited
to 8 KB in size. If the data to be processed are greater than 8 KB, the data should be
stored in a blob or table, and processing instructions sent in the message. In addition
to the messages, each queue can have up to 8 KB of metadata associated with it.
Metadata are stored as name-value pairs.

The idea behind a queue is to provide a way for different processes to communicate
with one another in an asynchronous manner. A queue is best used when there
is not tight time dependence between the completion of one action and when the
subsequent one completes. A queue should be used when the message must get
processed, but no one is waiting for the processing to happen. However, queues
can be used in many different scenarios, allowing flexibility in application tiers to
perform a structured workflow asynchronously.

Chapter 8

[109]

Reasons to use a queue
If we have to justify to a project manager why we should implement queues, here are
a few points we can use:

When any application crashes, any in-process session information is lost.
However, in the case of Queue Storage, it is persistent and has recovery
mechanisms if a message fails to process.
Queues allow processes to scale independently. One common arrangement
is for a front-end process to call a back-end process, wait for the back end to
complete, and then the front-end process performs its next action. There is a
1:1 relationship between front-end and back-end processes. By using a queue
to pass processing instructions, processes can scale independently of one
another; there can be 1:10 or 10:1 front-end to back-end process ratio. This
independent scalability allows our application to absorb traffic surges in a
better way.
Using multiple queues allows work to be segregated by importance. Queues
containing more important work can have more processes directed against
them, or can have special services written for them.
By decoupling application layers, the different processes can be written in
different languages, and may exist in completely different locations.

Invisibility time and failover
In the points we discussed in the previous section, we mentioned a recovery
mechanism if a message fails to process. Here's how that works:

• A GET request via the REST API or a query in the client library is prepared
in our application. The request or query should specify a parameter called
visibilitytimeout. The visibilitytimeout sets the amount of time
(in seconds) that the message will be invisible to subsequent processes.

• A message is "dequeued", that is, it is read from the queue and marked as
invisible to any further requests. The message technically stays in the queue,
but is inaccessible.

• If the message processing succeeds, the message is marked for deletion
and cleaned up later with garbage collection. It's important to delete the
message before the visibilitytimeout expires, or we risk another process
dequeuing and processing the message.

•

•

•

•

Queue Storage

[110]

• If the message processing fails, the message becomes visible again after the
visibilitytimeout has expired. As message processing is FIFO (First In,
First Out), the next process reading from the queue will retrieve this message
again, and the process starts over.

The process is outlined in the following diagram:

Choosing the right value for the visibilitytimeout parameter is important. If the
invisibility time set is too short, the message may become available again while it is
still being processed. On the other hand, if the processing time is too long, there will
be added latency should the message processing fail. Considering the consequences,
it's probably better to set the timeout a little longer.

Special handling for binary data
Binary data can be transmitted in XML, so that queued messages can contain binary
data. The data will be processed as binary data. However, when the messages are
dequeued, the data are Base-64 encoded, including the binary data. Our application
would need to decode the binary data properly before processing the binary data.

Working with queues
The client class for working with queues via .NET code is Microsoft.
WindowsAzure.StorageClient.CloudQueue. The methods listed here are methods
of this class, unless specified otherwise. The documentation for this library
can be found at http://msdn.microsoft.com/en-us/library/microsoft.
windowsazure.storageclient.cloudqueue.aspx.

Chapter 8

[111]

Documentation for the REST library for Queue Storage can be found at
http://msdn.microsoft.com/en-us/library/dd179363.aspx. The base URI for
accessing queues via the REST API is http://<account>.queue.core.windows.net.
To perform an operation on a specific queue, the URI is http://<account>.queue.
core.windows.net/<queue> and the different HTTP verbs (different HTTP verbs (PUT, GET, DELETE) are
used to determine the action.

When using the REST API, every operation has an optional timeout parameter that
sets the processing timeout of the operation. If the operation does not complete by
the timeout, it will fail. The default value is 30 seconds, which is also the maximum
value that can be set.

As with Table and Blob Storage, the optional x-ms-version header should also be
used with Queue Storage requests.

Listing queues
Obtaining a list of queues is technically an action performed against the account,
rather than the collection of queues. As such, the base URI or client library class are
different than for the rest of the operations.

REST API
To list the queues in our account, a GET request is made to this URI:
http://<account>.queue.core.windows.net?comp=list. This will return
a list of up to 5,000 queues in our account. To shape the response, we can use
some optional URI parameters to filter the list:

Parameter Description
prefix Returns only such queues whose names begin with the

specified prefix.
marker Similar in function to the continuation tokens used for Table

Storage. The marker parameter specifies where the query
results begin. The results include a NextMarker parameter in
the response body that can be used as the marker value for a
subsequent query.

maxresults Limits the query only to the specified number of results.
include=metadata If this parameter is included, the queue's metadata will be

included as part of the response.

Queue Storage

[112]

Client library
The CloudQueueClient class is used to perform queue-related actions against
the storage account. Documentation for this class can be found at http://msdn.
microsoft.com/en-us/library/microsoft.windowsazure.storageclient.
cloudqueueclient.aspx.

To obtain a list of queues, we use the ListQueues method, which has three
overloads, as described in the following table:

Method signature Description
ListQueues() Returns all queues in our account.
ListQueues(<prefix>) Returns all queues whose names begin

with the specified prefix.
CloudQueueClient.ListQueues
(<prefix>, <QueueListingDetails>)

Returns all queues whose names
begin with the specified prefix, and
includes the specified level of details.
QueueListingDetails is an enum
with three values specifying the level of
detail—All (return all available details for
each queue), Metadata (include metadata
only), and None (return no details).

Creating queues
Because queues are addressable via URI, their names must be valid DNS names.
There are four basic rules regarding queue names:

The queue name can contain only letters, numbers, and "-"
The queue name must begin and end with a letter only
Queue names must be lowercase
A queue name must be at least three characters, but shouldn't be longer than
63 characters

Metadata names must be valid C# identifiers. Metadata names are case insensitive
when created or queried, but the case is preserved when the results are returned.

REST API
A PUT request is made to the base URI, naming the queue to be created. Queue
metadata is passed in the headers, using x-ms-meta-<name>:<value>. Metadata
names must follow the same naming rules as C# identifiers.

•

•

•

•

Chapter 8

[113]

If the named queue exists, the queue service checks the metadata to see if the two
queues are identical. If the metadata match, a 204 "No Content" response code is
received. If the metadata do not match, a 409 "Conflict" is returned.

Client library
To create a queue in a client library, we create an instance of the CloudQueue class,
with the name we want the queue to be set to the name of this instance. We then
call the Create method to create the queue. Metadata are added as properties of
the CloudQueue instance.

Deleting queues
A queue is not immediately deleted when the Delete method succeeds. Instead,
the queue is marked as unavailable and is cleaned up at a later time via garbage
collection.

REST API
The Delete method is used to delete the queue specified in the URI.

Client library
To delete a queue via the client library, we create an instance of the CloudQueue class
pointing to the queue we want to delete, and call the Delete method.

Setting metadata
As users, we can define metadata that describe the queue. Note that metadata are
added to the queue, not the messages. We can use queue metadata to easily identify
the characteristics of a queue, such as adding messages or working on messages, or
the types of messages that pass through the queue.

REST API
To add/delete metadata via the REST API, a PUT request is made against the
URI http://<account>.queue.core.windows.net/<queue>?comp=metadata.
Metadata are specified in the request header as x-ms-meta-<name>:<value>. If
no metadata are specified in the header, all metadata are deleted from the queue.

Queue Storage

[114]

Client library
To start, we create an instance of CloudQueue class, referencing a specific queue.
Then we create a NameValueCollection containing the metadata. We then add this
to the Metadata property of our instance, and call the SetMetadata method.

Getting metadata
The whole point of setting metadata is to be able to retrieve the metadata for later
usage. Let's now see how to retrieve the metadata.

REST API
To retrieve the metadata, we use a GET request to the URI http://<account>.
queue.core.windows.net/<queue>?comp=metadata. Metadata are returned as
x-ms-meta-<name>:<value> headers. To assist in processing the headers, the
x-ms-approximate-message-count:<count> header is also returned.

Client library
When we create an instance of the CloudClient pointing to a specific queue, the
metadata are accessible as the Metadata property of the queue.

Working with messages
As message manipulations are actually actions performed against a queue, the
message methods are also part of the CloudQueue class.

Documentation for the REST library can be found at http://msdn.microsoft.com/
en-us/library/dd135717.aspx. The base URI for accessing queues via the REST
API is http://<account>.queue.core.windows.net/<queue>/messages.

To address a specific message by its ID, the URI is http://<account>.queue.
core.windows.net/<queue>/messages/messageid?popreceipt=<messageid>.
The different HTTP verbs (POST, GET, DELETE) are used to determine the action. Note
that the specific queue name is specified as part of the URI. Message properties are
specified in the request body, which is in Atom format. Response bodies are also in
Atom format.

Chapter 8

[115]

Parameter Rest API Client library
Put
messages

A message is added to the end of a
queue by submitting a POST request to
http://<account>.queue.core.
windows.net/<queue>/messages.
The message is XML and is posted
in the request body. Messages are
limited to 8 KB in length, and must
be able to be UTF-8 encoded. The
optional messagettl querystring
property can be used to set the time to
live (in seconds) for the message. The
default TTL is seven days, which is the
maximum value. Should a message
reside in a queue for more than the
TTL, the message will be deleted.

A message is created as an instance
of a CloudQueueMessage, and
is added to a queue by calling
the AddMessage method.
There are two overloads—
AddMessage(<message>) and
AddMessage(<message>,<time
-to-live>).

Get
messages

The GET method dequeues messages
from the specified queue for
processing. Messages are returned
in the response body in XML format;
the format is the same as what was
specified under the Put Message
request.

There are two optional querystring
parameters that can be utilized:

numofmessages: Sets the
number of messages to be
returned. The value can be
from 1 (default) to 32.
visibilitytimeout:
Sets the time in seconds the
retrieved messages will be
invisible. The maximum value
can be of up to two hours.
Default is 30 seconds.

When messages are dequeued via a
GET method, they are made invisible
to other processes. Included in the
response properties is a PopReceipt,
which is a message identifier that must
be passed back in the DELETETE request.t.

•

•

To dequeue the next message in
the queue, the GetMessage()
method can be used. There are two
overloads—GetMessage(), and
GetMessage(<visibilitytim
eout>). To dequeue a number of
messages, the GetMessages(<num
ofmessages>) or GetMessages(
<numofmessages>,<visibilit
ytimeout>)) are used..

Queue Storage

[116]

Parameter Rest API Client library
Peek
messages

Peeking works the same as getting
messages, with one required parameter
in the querystring. To peek at
messages, we use a GET method to the
URI http://<account>.queue.
core.windows.net/<queue>/
messages?peekonly=true. The
only optional querystring parameter is
numofmessages.
Peeking at messages is similar to
getting messages, but when we peek,
a message is not marked as invisible.
This allows us to examine the contents
of a queue (such as how long messages
have been hanging around), without
affecting queue processing.

As with GET, there are two methods
we can call: PeekMessage() peeks
at the next message in the queue,
while PeekMessages(<numofmes
sages>) is used to peek at multiple
messages.

Delete
messages

To delete a message, we use a
DELETE request to the URI http://
<account>.queue.core.windows.
net/<queue>/messages/messagei
d?popreceipt=<string-value>.

If we want to delete all messages in a
queue, we make a DELETE request to
http://<account>.queue.core.
windows.net/<queue>/messages.
If there are a lot of messages, the
command may timeout before it
completes. The DELETE method is
not transactional, so in this case,
the DELETE request can be reissued
several times until all messages have
been deleted.
It is important for applications
working with messages to delete them
if processing is successful. Otherwise,
once the visibility timeout expires,
the messages will be available for
processing again. When a delete
operation is successful, messages are
not immediately deleted. Messages
are marked for deletion, which makes
them unavailable to any process,
and are cleaned up later by garbage
collection.

In the client library, we use
the DeleteMessage method.
There are two overloads—
DeleteMessage(<message>) or
DeleteMessage(<messageid>,<
popreceipt>).

All messages are cleared from a
queue by calling the Clear()
method.

Chapter 8

[117]

Summary
In this chapter, we looked at where queues fit into Windows Azure, how they
operate, and how to interact with queues using the REST API and a client library.
Queues can be used for a large variety of asynchronous operations, passing messages
between tiers of our applications. Whether we're using messages to pass information,
control workflows, or a combination of the two, we can tailor our queue to bring out
the best in any application with many processes across our application in the cloud.

Web Role
Azure applications are separated into two functional groups—web roles and worker
roles. To understand in simpler words, web roles are similar to websites, whereas
worker roles are similar to background services. An account must include at least
one instance of either a worker role or a web role, however, there is no restriction
on the maximum number of allowable instances. In this chapter, we'll cover
the following:

An introduction to web roles
Comparing web roles to traditional ASP.NET development
Creating a sample web role
Building the ASP.NET portal website for Jupiter Motors, as a web role

The role of the web
In Azure, a web role is an HTTP or HTTPS endpoint, and so a web role can include
both front-end websites as well as web services. Web roles can also make outbound
connections to web services via HTTP.

Web roles can access Azure storage services (queue, blob, or table) via either the
REST API or Windows Azure Storage Client Library, and can also connect to SQL
Azure. Azure uses IIS7 and supports FastCGI for interpreted languages such as
PHP or native code. Azure supports additional IIS modules such as the URL
rewrite module.

Web roles can be an important way to collect or distribute information. Information
can be supplied or collected via web services, or users can access websites to perform
any number of functions.

•

•

•

•

Web Role

[120]

With a few small differences, web development using Azure is nearly identical to
standard web development. Microsoft is making a concerted effort to support a
number of platforms and languages. In our example, we'll use Visual Studio 2008
and VB.NET, but SDKs have been developed for PHP/Eclipse and Ruby.

At this point, our example web role is simply a web form to upload a picture of the
production progress on our RV. In this chapter, we're going to develop the web form.
We'll be using the local development fabric and a local SQL Server, and we'll discuss
SQL Azure connections when we deploy our application.

Web roles, déjà vu, and ASP.NET
If you've ever travelled to a new place but felt like you've been there before, then
you'll be prepared for Azure development. Most components between the web role
and the ASP.NET web application are the same—.aspx pages, classes, web.config,
among other things. New components to our web role include three new assembly
references, a WebRole.vb (or WebRole.cs) file, and a trace listener addition in the
Web.config file.

The new assembly references are:

Microsoft.WindowsAzure.Diagnostics, which contains the diagnostics
and logging classes
Microsoft.WindowsAzure.ServiceRuntime, which allows the recycling of
roles and also allows access to configuration settings
Microsoft.WindowsAzure.StorageClient, which is the library for the Blob,
Table, and Queue Storage REST interfaces

These three assemblies are referenced in addition to the other references we need in
our application.

The new WebRole.vb (or WebRole.cs) file is just some template code for setting up
the logging and diagnostics (VB code shown in further section).

•

•

•

Chapter 9

[121]

Creating the solution and web role project
Now that we've discussed how similar Azure and ASP.NET development are, we
need to start with something slightly different. In order to develop using Azure, we
need to have the SDK and Visual Studio tools installed (refer to Chapter 3). These
tools add new project and item templates that we need to use in Visual Studio.

To create our Azure project, open Visual Studio, start a new project, open the
language (in our case, Visual Basic) and select Cloud. Under Templates, choose
a Windows Azure Cloud Service and give a suitable name to the project.

Web Role

[122]

Once the solution and project is created by Visual Studio, we are prompted to
add roles to our project. At this time, we only need to add a single web role to
our project.

Our new project now looks like this:

One of the new project components needed for Azure development is WebRole.vb.
This file is automatically created when our web role was created, and contains the
following boilerplate code:

Imports Microsoft.WindowsAzure.Diagnostics
Imports Microsoft.WindowsAzure.ServiceRuntime

Chapter 9

[123]

Public Class WebRole
 Inherits RoleEntryPoint

 Public Overrides Function OnStart() As Boolean

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 ' For information on handling configuration changes
 ' see the MSDN topic at
 http://go.microsoft.com/fwlink/?LinkId=166357.
 AddHandler RoleEnvironment.Changing, AddressOf
 RoleEnvironmentChanging

 Return MyBase.OnStart()

 End Function

 Private Sub RoleEnvironmentChanging(ByVal
 sender As Object, ByVal e As
 RoleEnvironmentChangingEventArgs)

 ' If a configuration setting is changing
 If (e.Changes.Any(Function(change)
 TypeOf change Is RoleEnvironmentConfigurationSettingChange))
 Then' Set e.Cancel to true to restart this role instance
 e.Cancel = True
 End If

 End Sub

End Class

Application diagnostics and logging in
the cloud
Think of how we currently log our events and diagnostics. We have IIS logs and
application logs to help us see things in the event of something not working. These
logs live on our physical servers, and we can access them anytime we need. Now,
think of how our application lives in Windows Azure. We don't have any physical
machines to save logs or any control of IIS. How are we going to store our logs for
debugging problems?

Web Role

[124]

Fortunately, even Microsoft had to confront this problem and it came up with an
appropriate answer. First, we need to ensure our application has a trace listener
enabled; a trace listener is a link between our application and Azure's diagnostic
tools. We need to confirm the following code is present in the web.config file:

 <system.diagnostics>
 <trace>
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics.
DiagnosticMonitorTraceListener, Microsoft.WindowsAzure.Diagnostics,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 name="AzureDiagnostics">
 <filter type="" />
 </add>
 </listeners>
 </trace>
 </system.diagnostics>

We don't have access to logs on physical servers, but then what do we have?
When developing locally in our development fabric, we can see everything in the
Development Fabric UI. To achieve this, run the application in debug mode and
we will see that our development fabric starts (in Windows 7, we may need to
enable the permission to "run as administrator" for the development fabric to start).
Right-click on the fabric icon in the notifications area of your taskbar, and select the
Show Development Fabric UI option as shown in the next screenshot:

This will open up the Development Fabric UI. From here, we can drill down into our
web role instance to see everything we have set to log.

Chapter 9

[125]

This is great news for local development, but what about logging in the cloud?
Because we don't have our physical machines to store our logs on, and we don't
have a Production Fabric UI, then what do we have? Well, the answer is we have
Windows Azure Storage at our fingertips. Not only did Microsoft give us a way to
keep this information in Windows Azure Storage, but they also built a nice way to
log information in our code.

Specific information needs to be kept in a particular type of storage, whether it is
Blob or Table Storage. The following is the correct storage type for each log:

Blob Storage: IIS7 logs, Failed Request logs, Crash Dumps, and Custom
Error logs
Table Storage: Windows Azure logs, Windows Diagnostic infrastructure
logs, Windows Event logs, and Performance Counters

At this point, our application doesn't include any logging. We're still developing
locally, so we have the UI to debug. Before an application is released into the
production cloud, it would be wise to add some type of logging and diagnostics.
We will dig into this deeper in Chapter 15, Deploying to Windows Azure.

•

•

Web Role

[126]

Jupiter Motors web role
Our web role for Jupiter Motors is a simple application structure. We have:

Default.aspx page to use for navigating to other pages
UploadOrderPicture.aspx page for our web form to upload pictures for
an order
ViewOrders.aspx page to see an order status and any uploaded pictures
Web.config file and the new WebRole.vb file

Here is how our Portal pages will look like:

The following is what we see when we run the UploadOrderPicture.aspx page..
Our web form will be used to select an order in production, select a photo to show
the customer as an update, and upload this photo into Blob Storage. Once the picture
is saved in Blob Storage, a record will be written to the OrderPictures table in our
Portal database (that will eventually live in the SQL Azure cloud). This page will
mainly be used by the production line to provide the photos of the RV being built.

•

•

•

•

Chapter 9

[127]

The following screenshot shows the ViewOrders.aspx page. This page will be
used mainly by customers to check the status of their orders and see photos of
the RV in production.

Web Role

[128]

How do we get there? Here's our code!
In the following sections, we will see how similar programming for Azure is to
programming for traditional ASP.NET websites; except for the Azure-specific code
to collect diagnostic information and use Blob Storage, everything else is the same.

Additional stored procedures used by the web role
We'll use stored procedures so that we can encapsulate search and filtering logic in
the database layer, which is most optimized for that type of processing. These stored stored
procedures need to be created in the Portal database, and will retrieve data needed
by the pages in the web role.

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[NewOrderPicture]
 -- Add the parameters for the stored procedure here
 @OrderHeaderID int,
 @PictureFile varchar(100)
AS
BEGIN

 SET NOCOUNT ON;

 Insert Into OrderPictures(OrderHeaderID, PictureFile, PictureDate)
 Values(@OrderHeaderID, @PictureFile, getdate())

END
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[GetOrderStatusForOrderHeaderID]
@OrderHeaderID int
AS
BEGIN

 SET NOCOUNT ON;

 Select os.Description

Chapter 9

[129]

 From OrderHeaders oh
 Join OrderStatuses os
 On oh.OrderStatusID = os.OrderStatusID
 Where oh.OrderHeaderID = @OrderHeaderID
END
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE PROCEDURE [dbo].[GetOrdersInProduction]

AS
BEGIN
 SET NOCOUNT ON;

 Select OrderHeaderID, CustomerPO From OrderHeaders
 Where OrderStatusID = 4
END
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[GetOrders]

AS
BEGIN
 SET NOCOUNT ON;

 Select OrderHeaderID, CustomerPO From OrderHeaders
END

The following is the code for the Default.aspx HTML page:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Default.
aspx.vb" Inherits="WebRole1._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

Web Role

[130]

 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>
 Jupiter Motors Customer Portal
 </h1>
 <p>
 Welcome to the Jupiter Motors Customer Orders Portal.
 </p>
 </div>
 <div>
 <h3>
 What would you like to do?</h3>
 <p>
 <asp:LinkButton ID="lnkBntUploadPicture"
 runat="server">Upload Picture for Order</asp:LinkButton>
 </p>
 <p>
 <asp:LinkButton ID="lnkBtnViewOrders"
 runat="server">View Orders</asp:LinkButton>
 </p>
 </div>
 </form>
</body>
</html>

The following is the Default.aspx code-behind:

Partial Public Class _Default
 Inherits System.Web.UI.Page

 ''' <summary>
 ''' Redirects user to UploadOrderPicture.aspx
 when link button is clicked
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
 Protected Sub lnkBntUploadPicture_Click
 (ByVal sender As Object, ByVal e As EventArgs)
 Handles lnkBntUploadPicture.Click
 Response.Redirect("~/UploadOrderPicture.aspx")
 End Sub

Chapter 9

[131]

 ''' <summary>
 ''' Redirects user to ViewOrders.aspx when link button is clicked
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
 Protected Sub lnkBtnViewOrders_Click
 (ByVal sender As Object, ByVal e As EventArgs)
 Handles lnkBtnViewOrders.Click
 Response.Redirect("~/ViewOrders.aspx")
 End Sub
End Class

The following is the UploadOrderPictures.aspx HTML file code:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="UploadOrder
Picture.aspx.vb"
 Inherits="WebRole1.UploadOrderPicture" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div id="UploadPicture">
 <div>
 <h1>
 Welcome to the Upload Order Picture Page
 </h1>
 <p>
 This is where we will upload a picture or update the
 status of an order.
 </p>
 </div>
 <div>
 <h3>
 Upload a picture:
 </h3>
 <p>
 Order Number:
 <asp:DropDownList ID="ddlOrdersInProduction"
 runat="server" />

Web Role

[132]

 Hint: Order must be "In Production" status to upload
 picture for order.
 </p>
 </div>
 <div>
 <p>
 Select a file to upload:
 <asp:FileUpload ID="fileuploadPicture"
 runat="server" />
 </p>
 </div>
 <div>
 <asp:Button ID="btnUploadPicture" runat="server"
 Text="Upload Picture" />
 <asp:Label ID="lUploadMsg" runat="server"/>
 </div>
 </div>
 </form>
</body>
</html>

The following is the code behind for the UploadOrderPictures.aspx:

Imports Microsoft.WindowsAzure
Imports Microsoft.WindowsAzure.StorageClient
Imports Microsoft.WindowsAzure.ServiceRuntime
Imports System.Data.SqlClient

Partial Public Class UploadOrderPicture
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 Try
 If Not Page.IsPostBack Then
 Me.LoadOrdersInProduction()
 End If

 Catch ex As Exception
 lUploadMsg.Text = "Error: " & ex.Message()
 End Try

 End Sub

 Private Sub LoadOrdersInProduction()

Chapter 9

[133]

 Try
 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "GetOrdersInProduction"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 End With
 ddlOrdersInProduction.DataSource =
 _SQLcmd.ExecuteReader()
 ddlOrdersInProduction.DataTextField = "CustomerPO"
 ddlOrdersInProduction.DataValueField = "OrderHeaderID"
 ddlOrdersInProduction.DataBind()
 ddlOrdersInProduction.Items.
 Insert(0, New ListItem("Choose an order...", "0"))
 Catch ex As Exception
 lUploadMsg.Text = "Error: " & ex.Message()
 End Try

 End Sub

 Protected Sub btnUploadPicture_Click(ByVal sender As Object,
 ByVal e As EventArgs) Handles btnUploadPicture.Click
 If fileuploadPicture.HasFile Then
 Try
 Dim _pictureID As String = Guid.NewGuid.ToString()
 Me.SaveImageToBlobStorage(ddlOrdersInProduction.
SelectedItem.ToString, _pictureID, fileuploadPicture.FileName, _
 fileuploadPicture.PostedFile.
ContentType, fileuploadPicture.FileBytes)
 Me.InsertOrderPictureInTable
 (ddlOrdersInProduction.SelectedValue, _pictureID)
 lUploadMsg.Text =
 "The picture has been loaded
 into Blob Storage successfully."
 Catch ex As Exception
 lUploadMsg.Text = "Error: " & ex.Message()
 End Try
 Else

Web Role

[134]

 lUploadMsg.Text = "You must select a file to upload."
 End If

 End Sub

 ''' <summary>
 ''' This routine will insert the picture into Blob Storage
 ''' </summary>
 ''' <param name="sOrderNo"></param>
 ''' <param name="sId"></param>
 ''' <param name="sFileName"></param>
 ''' <param name="sContentType"></param>
 ''' <param name="bData"></param>
 ''' <remarks></remarks>
 Private Sub SaveImageToBlobStorage(ByVal sOrderNo As String,
 ByVal sId As String,
 ByVal sFileName As String, _
 ByVal sContentType As String,
 ByVal bData As Byte())
 Try
 'Make sure the container exists in
 Blob Storage and get the Blob reference
 Me.CreateContainerIfNotExists(sOrderNo)
 Dim _blob =
 Me.GetContainer(sOrderNo).GetBlobReference(sId)

 'Set the Blob Content Type
 _blob.Properties.ContentType = sContentType

 'Set Metadata Values
 Dim _metadata = New NameValueCollection()
 _metadata("Uploaded") = Date.Now

 'Upload Metadata for Blob, then upload the Blob itself
 _blob.Metadata.Add(_metadata)
 _blob.UploadByteArray(bData)
 Catch ex As Exception
 lUploadMsg.Text = "Error: " & ex.Message()
 End Try

 End Sub

 ''' <summary>

Chapter 9

[135]

 ''' This routine creates the container
 in Blob Storage if it does not exist
 ''' and sets the permissions to Public Access
 ''' </summary>
 ''' <param name="sContainer"></param>
 ''' <remarks></remarks>
 Private Sub CreateContainerIfNotExists
 (ByVal sContainer As String)
 Try
 Dim _container = GetContainer(sContainer)
 _container.CreateIfNotExist()

 Dim _permissions = _container.GetPermissions()
 _permissions.PublicAccess =
 BlobContainerPublicAccessType.Container
 _container.SetPermissions(_permissions)
 Catch ex As Exception
 lUploadMsg.Text = "Error: " & ex.Message()
 End Try
 End Sub

 ''' <summary>
 ''' This function retrieves the Container Reference
 ''' </summary>
 ''' <param name="sContainer"></param>
 ''' <returns></returns>
 ''' <remarks></remarks>
 Private Function GetContainer(ByVal sContainer As String)
 As CloudBlobContainer
 Try
 Dim _account =
 CloudStorageAccount.DevelopmentStorageAccount()
 Dim _client = _account.CreateCloudBlobClient()

 Return _client.GetContainerReference(sContainer)

 Catch ex As Exception
 Throw New Exception("Error: " & ex.Message())
 End Try
 End Function

 ''' <summary>
 ''' This routine will add the record to the OrderPictures table
 ''' </summary>
 ''' <param name="iOrderHeaderID"></param>

Web Role

[136]

 ''' <param name="sPictureFile"></param>
 ''' <remarks></remarks>
 Private Sub InsertOrderPictureInTable
 (ByVal iOrderHeaderID As Integer,
 ByVal sPictureFile As String)
 Try
 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "NewOrderPicture"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 .Parameters.AddWithValue
 ("@OrderHeaderID", iOrderHeaderID)
 .Parameters.AddWithValue
 ("@PictureFile", sPictureFile)
 .ExecuteNonQuery()
 End With
 Catch ex As Exception
 lUploadMsg.Text = ex.Message()
 End Try
 End Sub

End Class

The following is the ViewOrders.aspx HTML file code:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="ViewOrders.
aspx.vb" Inherits="WebRole1.ViewOrders" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>

Chapter 9

[137]

 View Orders Page</h1>
 <p>
 This is where we view our order
 status and any picture updates for an order.</p>
 </div>
 <div>
 <asp:Label ID="lMessage" runat="server" />
 <p>
 Customer PO:
 <asp:DropDownList ID="ddlOrders"
 runat="server" AutoPostBack="true" />
 Hint: Order must be "In Production"
 status to view picture updates.
 </p>
 <h3>
 Order Status:
 </h3>
 <p>
 The selected order is currently in status:
 <asp:Label ID="lOrderStatus" runat="server" />
 </p>
 </div>
 <div>
 <h3>
 Uploaded Pictures for the selected order:
 </h3>
 <asp:ListView ID="lstVwOrderPictures"
 runat="server" OnItemDataBound="AfterBlobDataBinding">
 <LayoutTemplate>
 <asp:PlaceHolder ID="itemPlaceHolder" runat="server" />
 </LayoutTemplate>
 <EmptyDataTemplate>
 <p>
 No pictures have yet been
 uploaded for this order. Please check back later.
 </p>
 </EmptyDataTemplate>
 <ItemTemplate>
 <div>

 <asp:Repeater ID="metadataRepeater"
 runat="server">
 <ItemTemplate>

Web Role

[138]

 <%# Eval("Name") %>
 -
 <%#Eval("Value")%>
 </ItemTemplate>
 </asp:Repeater>

 <img src="<%# Eval("Uri") %>"
 alt="<%# Eval("Uri") %>" />
 </div>
 </ItemTemplate>
 </asp:ListView>
 </div>
 </form>
</body>
</html>

The following is the code behind for ViewOrders.aspx:

Imports Microsoft.WindowsAzure
Imports Microsoft.WindowsAzure.StorageClient
Imports Microsoft.WindowsAzure.ServiceRuntime
Imports System.Data.SqlClient

Partial Public Class ViewOrders
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 Me.LoadOrders()
 End If

 Me.ShowOrderPictures(ddlOrders.SelectedItem.ToString)
 Me.GetOrderStatusForSelectedOrder(ddlOrders.SelectedValue)
 End Sub

 Private Sub LoadOrders()
 Try
 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

Chapter 9

[139]

 With _SQLcmd
 .CommandText = "GetOrders"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 End With
 ddlOrders.DataSource = _SQLcmd.ExecuteReader()
 ddlOrders.DataTextField = "CustomerPO"
 ddlOrders.DataValueField = "OrderHeaderID"
 ddlOrders.DataBind()
 ddlOrders.Items.Insert
 (0, New ListItem("Choose an order...", "0"))
 Catch ex As Exception
 lMessage.Text = "Error: " & ex.Message()
 End Try

 End Sub

 Private Sub GetOrderStatusForSelectedOrder
 (ByVal iOrderHeaderID As Integer)
 Try
 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "GetOrderStatusForOrderHeaderID"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 .Parameters.AddWithValue
 ("@OrderHeaderID", iOrderHeaderID)
 End With
 lOrderStatus.Text =
 _SQLcmd.ExecuteScalar()
 Catch ex As Exception
 lMessage.Text = ex.Message()
 End Try
 End Sub

 ''' <summary>
 ''' This routine retrieves the pictures from
 Blob Storage for an order

Web Role

[140]

 ''' and databinds them to the ListView "lstVwOrderPictures"
 ''' </summary>
 ''' <param name="sOrder"></param>
 ''' <remarks></remarks>
 Private Sub ShowOrderPictures(ByVal sOrder As String)
 Dim _options As BlobRequestOptions = New BlobRequestOptions()
 _options.BlobListingDetails = BlobListingDetails.All
 _options.UseFlatBlobListing = True

 If ddlOrders.SelectedValue <> 0 Then
 Me.CreateContainerIfNotExists(sOrder)
 lstVwOrderPictures.DataSource =
 Me.GetContainer(sOrder).ListBlobs(_options)
 lstVwOrderPictures.DataBind()
 End If

 End Sub

 ''' <summary>
 ''' This routine creates the container in
 Blob Storage if it does not exist
 ''' and sets the permissions to Public Access
 ''' </summary>
 ''' <param name="sContainer"></param>
 ''' <remarks></remarks>
 Private Sub CreateContainerIfNotExists
 (ByVal sContainer As String)
 Try
 Dim _container = GetContainer(sContainer)
 _container.CreateIfNotExist()

 Dim _permissions = _container.GetPermissions()
 _permissions.PublicAccess =
 BlobContainerPublicAccessType.Container
 _container.SetPermissions(_permissions)
 Catch ex As Exception
 lMessage.Text = "Error: " & ex.Message()
 End Try
 End Sub

 ''' <summary>
 ''' This function retrieves the Container Reference
 ''' </summary>
 ''' <param name="sContainer"></param>
 ''' <returns></returns>

Chapter 9

[141]

 ''' <remarks></remarks>
 Private Function GetContainer
 (ByVal sContainer As String) As CloudBlobContainer
 Try
 Dim _account =
 CloudStorageAccount.DevelopmentStorageAccount()
 Dim _client = _account.CreateCloudBlobClient()

 Return _client.GetContainerReference(sContainer)

 Catch ex As Exception
 Throw New Exception("Error: " & ex.Message())
 End Try
 End Function

 ''' <summary>
 ''' This routine is called after the
 blob has been databound to the ListView "lstVwOrderPictures"
 ''' and sets the metadata to the repeater (Uploaded Date & Time)
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
 Protected Sub AfterBlobDataBinding
 (ByVal sender As Object, ByVal e As ListViewItemEventArgs)
 If e.Item.ItemType = ListViewItemType.DataItem Then
 Dim _metadataRepeater =
 TryCast(e.Item.FindControl("metadataRepeater"), Repeater)
 Dim _blob = TryCast(DirectCast((e.Item),
 ListViewDataItem).DataItem, CloudBlob)

 If _metadataRepeater IsNot Nothing Then
 'bind to metadata
 _metadataRepeater.DataSource = From _key In
 _blob.Metadata.AllKeys _
 Select New With {.Name = _key, .Value =
 _blob.Metadata.Get(_key)}
 _metadataRepeater.DataBind()
 End If
 End If
 End Sub
End Class

Web Role

[142]

Our Web.config has only one addition beyond the original generated code for the
trace listener—the connection string, portal, has been added to the connection
strings section of the file.

<configuration>
 <connectionStrings>
 <add name="portal"
 connectionString="server=(local)\SQLEXPRESS;
 database=portal;uid=Portal;pwd=P@ssw0rd"/>
 </connectionStrings>

Our web role is now complete and should look like this:

Summary
Our Jupiter Motors web role is now complete. We can now upload pictures into
Blob Storage via the UploadOrderPicture.aspx page, and view the orders, statuses
for orders, and any uploaded pictures via the ViewOrders.aspx page. In the next
chapter, we will tackle Windows Communication Foundation (WCF) in our
Windows Azure application!

Web Services and Azure
Technically, web services are part of the web role, but their use and development are
so distinctly different than web forms that we'll look at these separately. The web
services themselves can be written in any language supported by Azure, but utilizing
the Windows Communication Foundation (WCF) libraries in .NET greatly simplifies
the development of web services. The simple storage services have their own REST
API and client library developed, but if we want to add data into SQL Azure, we'll
have to create our own web services.

In this chapter, we'll:

Gain an overview of WCF services
Build the WCF service for the Jupiter Motors portal

Web services and WCF
A web service is not one single entity and consists of three distinct parts:

An endpoint, which is the URL (and related information) where client
applications will find our service
A host environment, which in our case will be Azure
A service class, which is the code that implements the methods called by the
client application

A web service endpoint is more than just a URL. An endpoint also includes:

The bindings, or communication and security protocols
The contract (or promise) that certain methods exist, how these methods
should be called, and what the data will look like when returned

•

•

•

•

•

•

•

Web Services and Azure

[144]

A simple way to remember the components of an endpoint is A/B/C, that is,
address/bindings/contract.

Web services can fill many roles in our Azure applications—from serving as a
simple way to place messages into a queue, to being a complete replacement
for a data access layer in a web application (also known as a Service Oriented
Architecture or SOA). In Azure, web services serve as HTTP/HTTPS endpoints,
which can be accessed by any application that supports REST, regardless of
language or operating system.

The intrinsic web services libraries in .NET are called Windows Communication
Foundation (WCF). As WCF is designed specifically for programming web
services, it's referred to as a service-oriented programming model. We are not limited
to using WCF libraries in Azure development, but we expect it to be a popular
choice for constructing web services being part of the .NET framework. A complete
introduction to WCF can be found at http://msdn.microsoft.com/en-us/
netframework/aa663324.aspx.

When adding WCF services to an Azure web role, we can either create a separate
web role instance, or add the web services to an existing web role. Using separate
instances allows us to scale the web services independently of the web forms, but
multiple instances increase our operating costs. Separate instances also allow us to
use different technologies for each Azure instance; for example, the web form may be
written in PHP and hosted on Apache, while the web services may be written in Java
and hosted using Tomcat. Using the same instance helps keep our costs much lower,
but in that case we have to scale both the web forms and the web services together.
Depending on our application's architecture, this may not be desirable.

Securing WCF
Stored data are only as secure as the application used for accessing it. The Internet
is stateless, and REST has no sense of security, so security information must be
passed as part of the data in each request. If the credentials are not encrypted, then
all requests should be forced to use HTTPS. If we control the consuming client
applications, we can also control the encryption of the user credentials. Otherwise,
our only choice may be to use clear text credentials via HTTPS.

For an application with a wide or uncontrolled distribution (like most commercial
applications want to be), or if we are to support a number of home-brewed
applications, the authorization information must be unique to the user. Part of the
behind-the-services code should check to see if the user making the request can
be authenticated, and if the user is authorized to perform the action. This adds
additional coding overhead, but it's easier to plan for this up front.

Chapter 10

[145]

There are a number of ways to secure web services—from using HTTPS and
passing credentials with each request, to using authentication tokens in each
request. As it happens, using authentication tokens is part of the AppFabric
Access Control, and we'll look more into the security for WCF when we dive
deeper into Access Control.

Jupiter Motors web service
In our corporate portal for Jupiter Motors, we included a design for a client
application, which our delivery personnel will use to update the status of an order
and to decide which customers will accept delivery of their vehicle. For accounting
and insurance reasons, the order status needs to be updated immediately after a
customer accepts their vehicle. To do so, the client application will call a web service
to update the order status as soon as the Accepted button is clicked. Our WCF
service is interconnected to other parts of our Jupiter Motors application, so we
won't see it completely in action until it all comes together. In the meantime, it will
seem like we're developing blind. In reality, all the components would probably
be developed and tested simultaneously, but the structure of a book makes
that difficult.

Creating a new WCF service web role
When creating a web service, we have a choice to add the web service to an existing
web role, or create a new web role. This helps us deploy and maintain our website
application separately from our web services. And in order for us to scale the web
role independently from the worker role, we'll create our web service in a role
separate from our web application. Creating a new WCF service web role is very
simple—Visual Studio will do the "hard work" for us and allow us to start coding
our services.

First, open the JupiterMotors project. Create the new web role by right-clicking on
the Roles folder in our project, choosing Add, and then select the New Web Role
Project… option.

Web Services and Azure

[146]

When we do this, we will be asked what type of web role we want to create. We
will choose a WCF Service Web Role, call it JupiterMotorsWCFRole, and click on
the Add button. Because different services must have unique names in our project,
a good naming convention to use is the project name concatenated with the type of
role. This makes the different roles and instances easily discernable, and complies
with the unique naming requirement.

This is where Visual Studio does its magic. It creates the new role in the cloud
project, creates a new web role for our WCF web services, and creates some template
code for us. The template service created is called "Service1". You will see both, a
Service1.svc file as well as an IService1.vb file. Also, a web.config file (as we
would expect to see in any web role) is created in the web role and is already wired
up for our Service1 web service. All of the generated code is very helpful if you are
learning WCF web services.

This is what we should see once Visual Studio finishes creating the new project:

Chapter 10

[147]

We are going to start afresh with our own services—we can delete Service1.svc
and IService1.vb. Also, in the web.config file, the following boilerplate code can
be deleted (we'll add our own code as needed):

 <system.serviceModel>
 <services>
 <service name="JupiterMotorsWCFRole.Service1"
 behaviorConfiguration="JupiterMotorsWCFRole.
 Service1Behavior">
 <!-- Service Endpoints -->
 <endpoint address="" binding="basicHttpBinding"
 contract="JupiterMotorsWCFRole.IService1">
 <!--
 Upon deployment, the following identity
 element should be removed or replaced to reflect the
 identity under which the deployed service runs.
 If removed, WCF will infer an appropriate identity
 automatically.
 -->
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="JupiterMotorsWCFRole.Service1Behavior">
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the
 metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="true"/>
 <!-- To receive exception details in faults for debugging
 purposes, set the value below to true.
 Set to false before deployment to avoid
 disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

Web Services and Azure

[148]

Let's now add a WCF service to the JupiterMotorsWCFRole project. To do so,
right-click on the project, then Add, and select the New Item... option.

We now choose a WCF service and will name it as ERPService.svc:

Chapter 10

[149]

Just like the generated code when we created the web role, ERPService.svc as
well as IERPService.vb files were created for us, and these are now wired into
the web.config file. There is some generated code in the ERPService.svc and
IERPService.vb files, but we will replace this with our code in the next section.
When we create a web service, the actual service class is created with the name we
specify. Additionally, an interface class is automatically created. We can specify
the name for the class; however, being an interface class, it will always have its
name beginning with letter I. This is a special type of interface class, called a service
contract. The service contract provides a description of what methods and return
types are available in our web service.

Our WCF web services
Our WCF web service is going to expose two functions to return data to the client
and one routine to add a message to the queue when an order status is updated on
the client.

ERP service interface—IERPService.vb
These following functions and routines will be exposed when the service
is called from the client. This is our code in our IERPService.vb file, in the
WCFWebService1 role:

Imports System.ServiceModel

' NOTE: If you change the class name "IERPService" here, you must also
update the reference to "IERPService" in Web.config.
<ServiceContract()> _
Public Interface IERPService

 <OperationContract()> _
 Function LoadStartupData() As DataSet

 <OperationContract()> _
 Function GetOrderStatusForOrder(ByVal iOrderHeaderID As Integer)
As String

 <OperationContract()> _
 Sub AddOrderStatusUpdateToQueue(ByVal iOrderHeaderID As Integer,
ByVal iOrderStatusID As Integer)

 <DataContract()> _
 Class OrderStatus

Web Services and Azure

[150]

 Private statusName_value As String

 <DataMember()> _
 Public Property StatusName() As String
 Get
 Return statusName_value
 End Get
 Set(ByVal value As String)
 statusName_value = value
 End Set
 End Property

 End Class

End Interface

Now that we've created our interface, we can see it looks very similar to a traditional
interface, but the class and methods are decorated with contract attributes.

Service Contract
As we mentioned above, a Service Contract is a class-level attribute. The Service
Contract is the top level of the service definition, and encapsulates both the
operations and data. Just as methods and properties are children of a class,
Operation Contracts and Data Contracts are children of a Service Contract.

Operation Contract
The Operation Contract specifies the methods and the method signatures that
the web service client can call. Not all methods in the Service Contract need to
be labelled as Operation Contracts. Web services may use any number of helper
methods to support the publicly accessible ones.

Data Contract
The Data Contract describes how the returned data will be serialized or deserialized.
A Data Contract is a separate class in our interface; the data elements are properties
with the <DataMember()> attribute.

If we are returning a simple data structure—say a list of names—we do not
necessarily need to establish a Data Contract. However, using a Data Contract is
recommended as a best practice.

Chapter 10

[151]

For more advanced data types, even something as basic as a list of name-value pairs,
we need to include a Data Contract. We'll use a Data Contract to return the status of
an order.

For some additional information on Service, Operation, and Data Contracts,
visit http://msdn.microsoft.com/en-us/library/system.servicemodel.
servicecontractattribute.aspx. Data Contracts in particular are covered in
greater depth at http://msdn.microsoft.com/en-us/library/ms733127.aspx.

Using ADO.NET datasets
As ADO.NET datasets are serializable objects, it is possible to skip using a Data
Contract, and allow WCF to serialize a dataset. The one caveat is that we need to
make sure our client is .NET based so that it can deserialize the dataset properly.
An advantage ADO.NET datasets have is returning multiple recordsets in the same
method call. This can speed up performance by reducing the number of server
requests. We'll use this technique to load our client application's startup data.

ERP service implementation—ERPService.
svc.vb
Here are the actual functions and routines that will be executed when called from the
client. We can keep both the functions and routines directly linked to the service calls
(these are marked with Implements IERPService.[function or routine name])
and also other functions and routines that can be called (just like any other class):

Imports System.Data.SqlClient
Imports Microsoft.WindowsAzure
Imports Microsoft.WindowsAzure.StorageClient
Imports Microsoft.WindowsAzure.ServiceRuntime

' NOTE: If you change the class name "ERPService" here, you must
also update the reference to "ERPService" in Web.config and in the
associated .svc file.
Public Class ERPService
 Implements IERPService

Web Services and Azure

[152]

LoadStartupData service function
This function returns a dataset to the client with two different DataTables—one is the
list of orders not yet complete and the other is a list of order statuses. These will be
databound to list boxes in the client ERP application we'll create in Chapter 12.

 Private Function LoadStartupData() As DataSet Implements
 IERPService.LoadStartupData
 Dim _dataSet As New DataSet

 _dataSet = GetOrdersNotComplete(_dataSet)
 _dataSet = GetOrderStatuses(_dataSet)

 Return _dataSet

 End Function

GetOrderStatusForOrder service function
This function will accept an Order Header ID and return the status for that particular
order. This will be used to show the order status for a selected order, in a list box, in
our client ERP application.

 Private Function GetOrderStatusForOrder(ByVal iOrderHeaderID As
 Integer) As String Implements
 IERPService.GetOrderStatusForOrder
 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "GetOrderStatusForOrderHeaderID"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 .Parameters.AddWithValue
 ("@orderHeaderID", iOrderHeaderID)
 End With

 Return _SQLcmd.ExecuteScalar().ToString

 End Function

Chapter 10

[153]

AddOrderStatusUpdateToQueue service function
The following function will take the Order Header ID for a selected order, the Order
Status ID for a selected status, and add a message to our queue for our worker role to
pick up and update the order (which we will see in the next chapter).

 Private Sub AddOrderStatusUpdateToQueue(ByVal iOrderHeaderID As
 Integer, ByVal iOrderStatusID As Integer)
 Implements IERPService.AddOrderStatusUpdateToQueue
 Dim _account =
 CloudStorageAccount.DevelopmentStorageAccount()
 Dim _client = _account.CreateCloudQueueClient()

 Dim _queue As CloudQueue =
 _client.GetQueueReference("orderupdatequeue")

 _queue.CreateIfNotExist()

 Dim _msg As New CloudQueueMessage
 (iOrderHeaderID & "," & iOrderStatusID)
 _queue.AddMessage(_msg)

 End Sub

GetOrdersNotComplete, GetOrderStatuses, and
CreateDataSetFromDataReader class functions
The following functions will do the work of retrieving data and packaging the
DataTables into the DataSet to return to the client. These functions will be called by
the service functions we looked at in the previous section. They do not implement a
service function.

 Private Function GetOrdersNotComplete
 (ByVal dsLoadData As DataSet) As DataSet
 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "GetOrdersNotComplete"
 .CommandType = CommandType.StoredProcedure

Web Services and Azure

[154]

 .Connection = _SQLcon
 End With

 dsLoadData = CreateDataSetFromDataReader
 (_SQLcmd.ExecuteReader(),
 dsLoadData, "OrdersNotComplete")

 Return dsLoadData

 End Function

 Private Function GetOrderStatuses
 (ByVal dsLoadData As DataSet) As DataSet

 Dim _connStr As String =
 ConfigurationManager.ConnectionStrings
 ("portal").ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "GetOrderStatuses"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 End With

 dsLoadData = CreateDataSetFromDataReader
 (_SQLcmd.ExecuteReader(),
 dsLoadData, "OrderStatuses")

 Return dsLoadData
 End Function

 Private Function CreateDataSetFromDataReader
 (ByVal drReader As SqlDataReader,
 ByVal dsDataSet As DataSet, ByVal
 sTableName As String) As DataSet
 Do
 Dim _schemaTable As DataTable = drReader.GetSchemaTable()
 Dim _dataTable As New DataTable()

 If _schemaTable IsNot Nothing Then
 'The SqlDataReader returned results

Chapter 10

[155]

 'Set the DataTable Name to reference from DataSet
 _dataTable.TableName = sTableName

 For i As Integer = 0 To _schemaTable.Rows.Count - 1
 Dim _dataRow As DataRow = _schemaTable.Rows(i)
 'Create the column names
 Dim _columnName As String =
 _dataRow("ColumnName").ToString

 'Set the column type
 Dim _column As New DataColumn
 (_columnName, DirectCast
 (_dataRow("DataType"), Type))
 _dataTable.Columns.Add(_column)
 Next

 'Add DataTable to DataSet
 dsDataSet.Tables.Add(_dataTable)

 'Fill DataTable with results from SqlDataReader
 While drReader.Read()
 Dim _dataRow As DataRow = _dataTable.NewRow()

 For i As Integer = 0 To drReader.FieldCount - 1
 _dataRow(i) = drReader.GetValue(i)
 Next

 _dataTable.Rows.Add(_dataRow)
 End While
 End If
 Loop While drReader.NextResult()
 Return dsDataSet
 End Function

End Class

DataTable "gotcha"
Our original plan was to make two different calls to the web service for the
databinding of the list boxes in Chapter 12, and passing back the lists as a DataTable
to the client. The beauty of WCF services is that they can accept and return a wide
variety of serializable objects. At the time of writing, DataTables have been made
serializable but are not yet working through WCF, though DataSets are. This is why
we opted to package the DataTables into a DataSet and pass it back to the client.

Web Services and Azure

[156]

There are advantages and disadvantages to doing it this way. There are two major
advantages to this:

We need to give only one call to the client with only one returned object
to use
Client application speed is greater with only one call

The disadvantage to this is that the total size of a DataSet with one DataTable is
much bigger than the size of just the DataTable itself. The increased size could take
longer to transfer and also use more bandwidth. Our example is a very small set of
data; however, the DataSets in a real-life enterprise application could be a lot bigger.

Web Service Definition Language (WSDL)
"gotcha"
As we learned earlier in the book, the Windows Azure development fabric runs on
localhost, port 81 (or http://localhost:81 as you would see it in your Internet
browser). If you've ever dealt with web services, the following information displayed
on the page in your internet browser will look familiar:

Great news! Our service seems to be running fine! Or is it? Look at the link for the
service to get the WSDL: http://localhost:1289/ERPService.svc?wsdl That's
not the port we were expecting. If you follow the instructions on the page to test it
using the svcutil.exe, we get the following error:

•

•

Chapter 10

[157]

Error: Cannot obtain Metadata from http://localhost:1289/ERPService.svc. If this
is a Windows (R) Communication Foundation service to which you have access,
please check that you have enabled metadata publishing at the specified address. For
help enabling metadata publishing, please refer to the MSDN documentation at
http://go.microsoft.com/fwlink/?LinkId=65455.WS-Metadata Exchange Error URI:
http://localhost:1289/ERPService.svc Metadata contains a reference that cannot be
resolved: 'http://localhost:1289/ERPService.svc'. There was no endpoint listening
at http://localhost:1289/ERPService.svc that could accept the message. This is often
caused by an incorrect address or SOAP action. See InnerException, if present, for
more details. The remote server returned an error: (400) Bad Request.HTTP GET
Error URI: http://localhost:1289/ERPService.svc There was an error downloading
'http://localhost:1289/ERPService.svc'. The request failed with HTTP status 400:
Bad Request.

It looks like there is a metadata error, but we know we have metadata publishing
enabled as the page is able to display the publishing instructions. After digging
around for the answer, the problem was found. The schemaLocation reference was
incorrect in the WSDL. Microsoft has released a hotfix to correct this (one for Vista
and Server 2008, and the other for Windows 7):

Windows Vista and Server 2008: Download KB971842. To do this, go
to http://support.microsoft.com/kb/971842 for information and
to download.
Windows 7: Download KB981002. To do so, go to http://support.
microsoft.com/kb/981002 for information and to download.

Once downloaded and installed, the address to get the WSDL stays the same;
however, the schemaLocation reference is corrected and all is fine once again! Now
that we're able to generate the WSDL in our local development environment, we're
set to develop our client application.

Summary
In this chapter, we looked briefly at web services and WCF, and how they
fit into an Azure project. We then developed our WCF classes in a new web
role. Because our web service is interconnected to other parts of the Jupiter
Motors portal project, there is additional work to be done before we can see the
web services in action. Web services are very powerful, and we're only scratching
the surface, so if additional samples are desired, a good resource is available at
http://code.msdn.microsoft.com/wcfazure.

•

•

Worker Roles
Besides the web role, the Compute Service's other role is the Worker Role. Worker
roles are used for behind-the-scenes processing functions, and can also serve as
HTTP/HTTPS/TCP endpoints. Although they don't function in exactly the same
way, it's easy to think of worker roles as being similar to the services on our
local machines.

In this chapter, we'll cover:

Worker role internals
Uses for worker roles
Externally facing worker roles
Thread-pool pattern
Building the Jupiter Motors worker role

Worker role internals
Building worker roles is fairly simple—they are just class libraries that inherit
from the Microsoft.ServiceHosting.ServiceRuntime.RoleEntryPoint class.
Worker roles are automatically started when their host instance is started. During
startup, code in the OnStart() method is executed. The OnStart() method returns
a Boolean value. If OnStart() returns true, the role is started and the Run() method
is called, whereas if OnStart() returns false, the role is stopped.

Our worker tasks should be coded in the Run() method, and we should not return
from the Run() method. If we do, Azure will restart the worker role. Instead, and
despite our best instincts, the code in the Run() method should be enclosed inside
an infinite loop. The way to stop a worker role is to stop the host instance. For this
reason, worker roles that need to function independently should all be separated into
individual instances.

•

•

•

•

•

Worker Roles

[160]

When our worker role instance is being shut down by Azure, the OnStop() method
is called. We can add cleanup code to this method if necessary, or just a return
statement. OnStop() is not called in the event of application or hardware failure.
The Azure Fabric will wait for 20 seconds to receive a return code. If more than 20
seconds of time elapses, the role will be killed regardless of its status or place in
executing the code.

We can use any .NET language to develop worker roles. This is different from web
roles, which can be programmed in .NET and non-.NET languages. Even if we're
using Azure to host a server for a non-.NET language, there is still a little bit of
plumbing that needs to be done in a .NET language. There are "solution accelerators"
and examples for plumbing most of the major alternative web servers.

Uses of worker roles
Worker roles can be used to perform a variety of functions. Some of the uses of
worker roles include::

Processing messages contained in Queue Storage (thread-pool pattern)
Retrieving data from remote web services
Hosting non-IIS servers such as Jetty (http://blogs.msdn.com/b/dachou/
archive/2010/03/21/run-java-with-jetty-in-windows-azure.aspx),
PHP (http://blog.maartenballiauw.be/post/2010/04/08/Running-
PHP-on-Windows-Azure.aspx), and other web servers (http://blog.
smarx.com/posts/using-other-web-servers-on-windows-azure)
Serving as the TCP endpoint for FTP services (http://blog.
maartenballiauw.be/post/2010/03/15/Using-FTP-to-access-Windows-
Azure-Blob-Storage.aspx)
Mounting an Azure CloudDrive VHD
Accessing files on a CloudDrive VHD

Although worker roles can be used to host web servers for non-.NET languages, they
can only be developed in .NET languages.

The uses of worker roles are limited only by the collective imagination of the Azure
ecosystem. Microsoft has opened an Azure App Marketplace at http://pinpoint.
microsoft.com/en-US/windowsazure/resources, where applications developed
specifically for Azure are listed, most of which are worker roles or have worker role
components. Before embarking on extensive worker role development, it might be a
good idea to look through the App Marketplace.

•

•

•

•

•

•

Chapter 11

[161]

Externally facing worker roles
One of the Azure features touted by Microsoft is that non-IIS servers can be used on
Azure. Servers such as Tomcat and Jetty, as well as communications protocols such
as FTP, have all been implemented on Azure. The mechanism by which these have
been accomplished is externally facing worker roles. Worker roles can serve as TCP
endpoints, and using the System.Net.Sockets.TcpListener class, we can create
listeners for a number of protocols or ports. While IIS may be the primary web server
on Azure, externally facing worker roles provide us with a great deal of options
should we need to expand beyond IIS, or if we wish to utilize a non-.NET language.

Thread-pool pattern
In the thread-pool pattern (http://en.wikipedia.org/wiki/Thread_pool_
pattern), work that needs to be done accumulates in a queue, and one or more
threads process the work. As one unit or work is complete, the thread requests the
next unit in the queue. When all the work is complete, the thread can rest or monitor
until there is more work. Extending this pattern to Azure does not require a great
deal of imagination, with Queue Storage serving as the work queue, and a worker
role serving as the thread that processes work. Others have described this pattern as
the work-queue pattern.

Managing worker roles
Azure is an elastic system, meaning resources can fairly easily scale up or shrink
based on demand for those resources. Because the costs of Azure are based on
resource utilization, there is a balance between cost and performance for our
Azure applications; hence, managing roles is an essential part of a well-run
Azure application.

So how do we know when to scale up a worker role? The answer depends largely
on the overall system architecture. If we're experiencing high traffic, experiencing
significant lags in processing time, and a queue is filling faster than it can be
processed, it's probably time to increase the worker roles.

On the other hand, our system design may include a rate-limiting step to maintain
system resources downstream. Or, our application may employ the singleton
pattern to avoid data concurrency issues. In these cases, we'll have to look at
other mechanisms to increase performance under high loads.

Worker Roles

[162]

The initial number of instances for a particular role is specified using the Instances
element in the ServiceConfiguration.cscfg file, as seen here:

 <Role name="JupiterMotorsWorkerRole">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="DiagnosticsConnectionString"
 value="UseDevelopmentStorage=true" />
 </ConfigurationSettings>
 </Role>

When we deploy our application, we can control the number of instances by
adjusting the value of the Instance element. Should we need to scale up or down
after the application is deployed, we can either change the number of instances
in the Azure portal, or we can use the Service Management API (http://msdn.
microsoft.com/en-us/library/ee460799.aspx). Changing the number of
instances by editing the ServiceConfiguration.cscfg file is not recommended, as
edits to this file will cause the roles is restart, similar to how editing the web.config
file causes an ASP.NET web app to restart. Using the portal to increase the number
of instances does not cause an application to restart, but if we decrease the number
of instances, we do not have any control over which ones are shut down.

For a more automated solution, we can use another worker role to monitor the
length of a queue, and if a queue becomes too backed-up, increase the number of
worker roles. When the queue becomes depleted, the number of worker roles can
be reduced by the monitoring role.

Best practices
When building worker roles, the standard best practices still apply—object-oriented
design, reusable code, and so on.

An important additional practice is to add logging information. Worker roles operate
invisibly, so they can be difficult to debug. All we may have are the symptoms of the
malfunctioning role, with no indication of why the role is malfunctioning.

Another consideration in worker role design is limiting one worker role to one
function. For instance, we shouldn't design worker roles to process work from
more than one queue, even though it may be more cost-effective to do so. Limiting
the number of functions a worker role performs allows us to scale only what is a
bottleneck and not affect the processing of other data.

Chapter 11

[163]

We also need to design for parallel operation. If we have multiple instances of the
same worker role, we need to ensure they will not trip over each other and process
the same data or miss other work.

When creating an externally facing worker role, we need to keep in mind that Azure
is load balanced, and subsequent requests may not be processed by the same role
instance. State needs to be maintained in a way that it can be accessed by one role
instance on one request, and a different role instance on a different request. One
method to achieve this is to serialize state information into blobs.

The Jupiter Motors worker role
When an RV is finished, a Jupiter Motors driver takes the RV from our factory to the
customer. Because custom RVs can cost around US$400,000, and very high-end RVs
can cost around US$1,000,000, it's important the customer takes ownership of the
RV quickly. When a customer takes ownership of the vehicle, the vehicle is removed
from Jupiter Motors' insurance and begins the billing cycles to the customer. In
order to take ownership, the customer inspects the vehicle, and accepts delivery by
filling out a small form in a custom application on the driver's laptop. The custom
application calls our web service and updates the status of the order.

Rather than updating the database directly, the web service places a message in a
queue to be processed by our worker role. We are not expecting a high degree of
traffic through the web service, but the customer acceptance is a zero-failure process.
The built-in failover mechanisms of a queue make it a very attractive way to add
zero-failure with not too much extra work.

Building the Jupiter Motors worker role
Our Jupiter Motors worker role will take a message from our queue and will update
the order status in our portal database. This process will occur with our local
application simulating a handheld device with a connection to the Internet. The
application will capture the OrderHeaderID and OrderStatusID from our portal
database (via our WCF Web Service) and build a string for our queue message. The
string will be in a simple format of [OrderHeaderID],[OrderStatusID]. Let's see
how we can accomplish the task of reading this message and updating the database
from our queue message.

Worker Roles

[164]

First, we need to add a worker role to our project. We do this in the same manner
that we added our WCF role in the previous chapter by right-clicking our roles
folder in our JupiterMotors cloud application, choosing Add, and selecting the
New Worker Role Project... option.

We're going to name our worker role as JupiterMotorsWorkerRole, as shown in the
next screenshot:

At this point, we can see that our worker role is created for us with an app.config
file and a WorkerRole.vb file. A worker role executes much like a service in the
background. There is no visual aspect of the worker role. It is exactly what the name
claims—a worker. All of our code in the sample application will be placed in the
WorkerRole.vb file. We are not limited to keeping all of our code though. We can
create classes within the worker role project and split up the code if we want to. Our
code for the Jupiter Motors worker role calls only one routine, so it is simple enough
to keep within the WorkerRole class generated for us.

Chapter 11

[165]

Notice that the WorkerRole class starts out with a routine Public Overrides Sub
Run(). This is where our executable code will reside.

Imports System.Net
Imports System.Threading
Imports Microsoft.WindowsAzure.Diagnostics
Imports Microsoft.WindowsAzure.ServiceRuntime
Imports System.Data.SqlClient
Imports Microsoft.WindowsAzure
Imports Microsoft.WindowsAzure.StorageClient

Public Class WorkerRole
 Inherits RoleEntryPoint

 ' The Run() method is where the work is performed.
 We construct an infinite loop to ensure the role
 ' stays running.

 Public Overrides Sub Run()
 ' This is a sample implementation for
 JupiterMotorsWorkerRole. Replace with your logic.
 Trace.WriteLine("JupiterMotorsWorkerRole
 entry point called.", "Information")

 Dim _account =
 CloudStorageAccount.DevelopmentStorageAccount()
 Dim _client = _account.CreateCloudQueueClient()
 Dim _queue As CloudQueue =
 _client.GetQueueReference("orderupdatequeue")
 _queue.CreateIfNotExist()

 While (True)
 Thread.Sleep(10000)
 Trace.WriteLine("Working", "Information")

 'Gets a message from the queue
 Dim _msg As CloudQueueMessage = _queue.GetMessage()

 If Not _msg Is Nothing Then
 'Parse message to get the
 orderHeaderId and orderStatusId
 Dim _orderHeaderId As Integer
 Dim _orderStatusId As Integer
 Dim _separatorPosition As Integer

Worker Roles

[166]

 Dim _messageLength As Integer

 _messageLength = Len(_msg.AsString)
 _separatorPosition = _msg.AsString.IndexOf(",") + 1

 _orderHeaderId = Left(_msg.AsString,
 _messageLength - _separatorPosition)
 _orderStatusId = Right(_msg.AsString,
 _messageLength - _separatorPosition)

 'Call routine to update the order status
 UpdateOrderStatus(_orderHeaderId,
 _orderStatusId)

 'Delete the message from the queue
 once order is updated
 _queue.DeleteMessage(_msg)
 End If
 _msg = nothing

 End While

 End Sub

 ' OnStart() runs only once, when
 the role is initially started.
 This is a good method to set up
 ' any diagnostic connections, connection limits, etc.

 Public Overrides Function OnStart() As Boolean

 ' Set the maximum number of concurrent connections
 ServicePointManager.DefaultConnectionLimit = 12

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 ' For information on handling configuration changes
 ' see the MSDN topic at
 http://go.microsoft.com/fwlink/?LinkId=166357.
 AddHandler RoleEnvironment.Changing,
 AddressOf RoleEnvironmentChanging

 Return MyBase.OnStart()

 End Function

Chapter 11

[167]

 ' RoleEnvironmentChanging is executed
 after configuration changes are made,
 but before the changes are applied.
 ' Setting e.Cancel=true allows the role
 to be recycled. We can make the
 recycle conditional on some other
 ' value by modifying this method.

 Private Sub RoleEnvironmentChanging
 (ByVal sender As Object, ByVal e As
 RoleEnvironmentChangingEventArgs)

 ' If a configuration setting is changing
 If (e.Changes.Any(Function(change)
 TypeOf change Is
 RoleEnvironmentConfigurationSettingChange))
 Then
 ' Set e.Cancel to true to restart this role instance
 e.Cancel = True
 End If

 End Sub

 Public Sub UpdateOrderStatus
 (ByVal iOrderHeaderId As Integer,
 ByVal iOrderStatusId As Integer)

 Dim _connStr As String = My.Settings.ConnectionString
 Dim _SQLcon As New SqlConnection(_connStr)
 Dim _SQLcmd As New SqlCommand()

 _SQLcon.Open()

 With _SQLcmd
 .CommandText = "UpdateOrderStatusForOrderHeaderID"
 .CommandType = CommandType.StoredProcedure
 .Connection = _SQLcon
 .Parameters.AddWithValue
 ("@OrderHeaderID", iOrderHeaderId)
 .Parameters.AddWithValue
 ("@OrderStatusID", iOrderStatusId)
 .ExecuteNonQuery()
 End With

 End Sub

End Class

Worker Roles

[168]

An important piece of the worker role is the If Not _msg Is Nothing Then...
statement. This will make sure our code is executed only when there is a message
in the queue that was picked up by the worker role. Without this, we would receive
an Object reference not set to an instance of an object error. Other than that, the
worker role is a very straightforward class to run executable code.

Summary
In this chapter, we looked at worker roles, which are the other main functionality
provided by the Azure compute services. Similar to services on traditional operating
systems, worker roles run in the background and can perform a variety of functions,
including providing an HTTP endpoint for serving non-.NET languages. We then
built our worker role, which processes queued messages and updates our SQL
Azure database.

Local Application for Updates
With our web service and worker roles in place, it's time to develop the application
our drivers will use in order to confirm that the customer has accepted his/her
vehicle. What we're about to do can be accomplished by any technology capable of
calling a web service, but we'll use a simple Windows application to build on our
strengths in .NET development. Our aim here is to cover some basics of Windows
forms development, and one way to connect Windows Forms to Azure. However,
there are entire books dedicated to Windows Forms Development, so we'll cover
only a few things, including building a simple form to consume our web service in
our web role, taking the returned data, and updating list boxes and a label.

Brief overview of the application
Our application has two purposes. The first purpose is to show the current status
of an order. This is handled by selecting an order from the listbox and clicking a
link to update a label with the selected order's status. This is done using our WCF
web services by passing the OrderHeaderID to the web service and accepting the
order status produced as output. The application will then update the label with the
returned string.

The second purpose is to be able to update status for an order by selecting the order
from the listbox, selecting the new order status for the order, and clicking a button
to update the order. When the button is clicked, the OrderHeaderID for the selected
order and the OrderStatusID for the selected status is sent via the web service and
added to the queue for processing by our worker role.

How do our listboxes get populated? This is the third piece of our puzzle, and the
answer to this, as you must have guessed based on previous chapters, is using our
WCF service to retrieve the data for these. The data is requested at Form Load and
bound to the listboxes immediately once it is returned from the web service.

Local Application for Updates

[170]

JupiterMotorsERP local application
Adding our local application to the solution is very simple. Right-click on our
solution, and choose Add | New Project....

Under the project type Windows, select Windows Forms Application. Name the
project as JupiterMotorsERP and click OK.

Chapter 12

[171]

This will create a Form1.vb file and an app.config file. The Form1.vb will be our
form design and code, whereas the app.config will hold any settings we wound
need for the application.

As the first step toward setting up our local application, we're going to build the
design of our form. We need the following:

Two listboxes named lbOrdersNotComplete and lbOrderStatuses
A label named lCurrentStatus and another named lMessage
A link button called lnkUpdateCurrentStatus
A button called btnUpdateOrderStatus

Our sample application form now looks like the following screenshot:

•

•

•

•

Local Application for Updates

[172]

It's going to be a little tough for us to code our Windows Forms application to use
our web services, as we haven't yet told the project where we're going to call the
services. This is done by right-clicking on the project and choosing Add Service
Reference....

This is where Visual Studio does some great things. We can click the Discover
button, and it will search the solution for available web services; we can also
manually type in the URL of the service that we want to integrate with. For
developing our application now, we're going to click the Discover button and let
it find our web service in our WCF web role. Finally, name the service reference
as ERPServiceReference and click OK. This will add the necessary code to
app.config. We are now ready to run the application!

Chapter 12

[173]

Adding App.config code
This code was inserted into the app.config file once the service reference was set
up. We are good with using the code generated for us, but should any changes
need to be made to the service reference (such as changing the endpoint from a
local address to a production address), this is where you would make them:

 <system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding_IERPService"
 closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00"
 sendTimeout="00:01:00"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8"
 useDefaultWebProxy="true"
 allowCookies="false">
 <readerQuotas maxDepth="32"
 maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096"
 maxNameTableCharCount="16384" />
 <reliableSession ordered="true"
 inactivityTimeout="00:10:00"
 enabled="false" />
 <security mode="Message">
 <transport clientCredentialType="Windows"
 proxyCredentialType="None"
 realm="">
 <extendedProtectionPolicy
 policyEnforcement="Never" />
 </transport>
 <message clientCredentialType="Windows"
 negotiateServiceCredential="true"
 algorithmSuite="Default" establishSecurity
 Context="true" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <client>
 <endpoint address="http://localhost:1587/ERPService.svc"
 binding="wsHttpBinding"

Local Application for Updates

[174]

 bindingConfiguration="WSHttpBinding_IERPService"
 contract="ERPServiceReference.IERPService"
 name="WSHttpBinding_IERPService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>

Now, if we double-click somewhere in the form, it will open up the code for our
application. This is where we will add the following code to handle the web service
calls, listbox, data bindings, and the events for the link and button clicks.

Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
 As System.EventArgs) Handles MyBase.Load
 Try
 Dim _client As New ERPServiceReference.ERPServiceClient
 Dim _resultsSet As New DataSet

 _resultsSet = _client.LoadStartupData()

 lbOrdersNotComplete.SelectedItem() = Nothing
 lbOrdersNotComplete.DataSource = _resultsSet.
 Tables("OrdersNotComplete").DefaultView
 lbOrdersNotComplete.DisplayMember = "CustomerPO"
 lbOrdersNotComplete.ValueMember = "OrderHeaderID"
 lbOrdersNotComplete.SelectedItem() = Nothing

 lbOrderStatuses.DataSource = _resultsSet.
 Tables("OrderStatuses").DefaultView
 lbOrderStatuses.DisplayMember = "Description"
 lbOrderStatuses.ValueMember = "OrderStatusID"
 lbOrderStatuses.SelectedItem() = Nothing

 Catch ex As Exception
 lMessage.Text = ex.Message()
 End Try
 End Sub

 Private Sub btnUpdateOrderStatus_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs)
 Handles btnUpdateOrderStatus.Click

Chapter 12

[175]

 Dim _client As New ERPServiceReference.ERPServiceClient

 _client.AddOrderStatusUpdateToQueue(lbOrdersNotComplete.
 SelectedValue, lbOrderStatuses.SelectedValue)
 End Sub

 Private Sub lnkUpdateCurrentStatus_LinkClicked(ByVal
sender As System.Object, ByVal e As System.Windows.Forms.
LinkLabelLinkClickedEventArgs) Handles lnkUpdateCurrentStatus.
LinkClicked
 Dim _client As New ERPServiceReference.ERPServiceClient

 lCurrentStatus.Text = _client.GetOrderStatusForOrder(
 lbOrdersNotComplete.SelectedValue)

 End Sub
End Class

Testing our application
To test our application, we need to run the entire solution in debug mode. We can
easily do this in Visual Studio by pressing the F5 button. The web role, worker role,
and WCF web role should all start up in the development fabric once the solution is
built, except our local application. Once all the web and worker roles have started,
we can start an instance of our local application by right-clicking on the project and
selecting Debug | Start new instance.

Local Application for Updates

[176]

Our application will start up, bind the listboxes using the data returned from the web
services, and allow us to now check the order statuses for any order not yet complete
in the database. We can also change the status of any of these orders in the listbox.
Note that the order status changes do not occur immediately. The changes are placed
in the queue for processing and our worker role has a sleep timer on it. Once the
worker role picks up the message, it is updated and can be checked by clicking the
link and updating the label.

Summary
This chapter gave a quick summary on the concept behind the local application,
some basic information on creating a Windows Forms application, and integrating
it with web services using Visual Studio. We also used the web services to pull data
into the application for data binding, and updating labels based on current data in
the portal database.

Azure AppFabric
At the beginning of this book, we mentioned Microsoft's confusing product names,
and AppFabric products are perhaps one of the most confusing. Azure AppFabric
is one of two distinct Microsoft products that have the name AppFabric. The Azure
AppFabric and the Windows Server AppFabric are not related to one another, and
only the Azure AppFabric is part of the Azure platform. Now that we know which
AppFabric we will be dealing with, let's see what it's all about. In this chapter,
we'll cover:

What Azure AppFabric is
Overview of Access Control
Configuring Access Control for Jupiter Motors
Overview of Service Bus, including message relay and connection broker

Introduction to Azure AppFabric
Formerly known as .NET Services, Azure AppFabric provides both Access
Control and Service Bus services. Access Control is a service where we can
integrate third-party login services with our applications. Access Control can
be used separately from the rest of Azure, so we can integrate Access Control
with either our Azure applications or on premise applications.

The Service Bus service operates somewhat like a dynamic DNS service. If our
partner's application needs to connect with us to transfer information (perhaps
via FTP or AS2), we'd usually provide the partner with a static endpoint. A
static endpoint is troublesome from a disaster recovery or maintenance window
standpoint. Instead, we register our application in the Service Bus, and partner
applications can communicate indirectly with us through the Service Bus, or the
Service Bus can facilitate a direct connection. If publishing a public endpoint is
not desirable, using the Service Bus can be a palatable alternative.

•
•
•
•

Azure AppFabric

[178]

For greater detail and more examples on Azure AppFabric, Microsoft provides
sample code, whitepapers, and webcasts on the AppFabric site at http://msdn.
microsoft.com/en-us/azure/netservices.aspx. New features are being added
to Azure AppFabric, and these features can be previewed at https://portal.
appfabriclabs.com/.

Before any configuration can be performed, the Windows Azure AppFabric SDK
needs to be downloaded and installed from http://go.microsoft.com/fwlink/
?LinkID=129448. There are several files we need, the most important being the SDK
and the samples, as each contains an Access Control configuration utility.

Access Control
Federated authentication is neither a new or unique concept. For instance, users of
TweetPhoto do not need to create a separate account to log in—we can instead use
our account from one of several popular social sites to log in at TweetPhoto, even
though they are all separate and distinct companies.

When the Sign in with Twitter button is clicked, we're transferred to Twitter, and
the URL contains an authentication token in the querystring. We'll look more at the
OAuth protocol and these tokens later in this chapter, but sufficient to say for now,
Twitter is the identity provider of the Twitterverse.

As an additional confirmation step, Twitter requires confirmation for the partner
site to access a user's account, as seen in the following screenshot. This is a very
good idea when there is user interaction, but for unattended systems this won't be
possible. Fortunately, Access Control can be preconfigured to provide access using
shared keys.

Chapter 13

[179]

As the logins of these services are joined together, they are said to be federated.
We see federation all over the Internet, where a single OpenId, Google, Twitter,
Facebook, or Windows Live login can be used to access dozens or more additional
services, or a single site can support logins from multiple other sites. The sites where
we create an account are called identity providers, as our identity information
is stored and provided by these services. Knowing that each identity provider is
queried and returns data differently, we can appreciate the amount of work it would
take to implement a number of popular sites, as well as add new identity providers
and maintain any changes with currently supported providers.

One distinct difference between the Twitter example and Access Control is that a
single Twitter account can be used on multiple websites, while Access Control is
designed to integrate multiple identity providers into a single application.

If we don't actually log in to Access Control, what is it used for? Access Control is a
security token service (STS)—a trusted application that issues security tokens via a
standard interface. A security token is a small piece of text that contains identifying
information and an encrypted signature that is used to assure the contents of the token.

So how do identity providers and Access Control fit together? Every identity
provider returns identity data in a different format, which our application would
need to parse correctly. That could mean a lot of work and rework as APIs change
or are added. As application developers, we use Access Control to configure which
identity providers we trust, and remap the properties from each into a single format
our application can consume. The goal of Access Control is to federate identity
providers into a single common format that our application can understand. If we're
developing a very private application, Access Control may not be all that interesting,
and there are other means we could use (such as the standard ASP.NET login
provider). However, if we're developing a public application (like a forum site), this
is a very exciting service. As new providers emerge or current ones change their API,
we do not need to make any changes to our application code; we only need to make
configuration changes in Access Control so that our application can integrate with
the latest popular Internet sites.

Azure AppFabric

[180]

The little pieces of information about a user such as the username, first name,
last name, and so on are called "claims". An identity is the full set of claims that
represents a user. When a user accesses a site and logs in, the user ID is a claim being
made by that user. By claim we mean when a user enters his/her ID while logging in
to a site, he/she is trying to say that "I am this identity on this site." The verification
for that claim is entering the correct password.

These days, on a majority of sites, we must create a unique account for each one, and
each site then stores our identity separately as compared to other sites. By contrast,
Access Control does not store any identity information. Our service trusts the
information from the identity provider because we told Access Control to trust
the claims from the provider, and our application trusts Access Control.

Because Access Control is RESTful, Access Control can be utilized by any
application, and on any platform that can consume REST data. It's important to note
that Access Control can be the only Azure service we use, and the application that
consumes Access Control tokens can be written in any language.

Even though we just said that we don't log in to Access Control, Access
Control does support simple symmetric key logins, which can be used
as a rudimentary user ID/password system; however, it is not the main
purpose behind Access Control and its capability for authentication
services is very limited.
For additional information on Access Control, see Channel 9's Identity
and the Windows Azure Platform Training Course at http://
channel9.msdn.com/learn/courses/Azure/IdentityAzure/.

Authentication versus authorization
We've mentioned the terms authentication and authorization, and it's worth
discussing the difference between the two. In a claims-based identity model like
Access Control, authentication and authorization are separated from each other and
the rest of the application code.

Authentication establishes the identity of the user. This can be as simple as a
username/password, or as secure as a retina scan. Once the user is authenticated,
our application can determine what actions the user is then authorized to perform.

In Access Control, we do not configure authentication; we configure trust
relationships with the identity providers. We do configure authorization rules
(discussed further), which our application consumes and respects.

Chapter 13

[181]

Basics of Access Control configuration
When it comes to configuring Access Control, there is some good news and some
bad news. First, the good news: one day, Access Control may be a very useful service
for a considerable number of applications, whether or not these applications are
hosted on Azure. Now the bad news: at the time of writing, only symmetric key
and Active Directory Federation Services 2.0 (ADFS) are supported. The long-term
goal is to support every major identity provider, but we're not there yet. At the
rate Microsoft is developing Azure, it may not be too far, but no promises have
been made.

More good news: all configuration changes can be accomplished through a REST
interface. More bad news: at the time of writing, there were no online tools; all
configuration changes are handled through local tools that wrap the REST requests.
One tool is a command line in the SDK called ACM.EXE, the other is a sample called
ACMBROWSER. A very good overview of configuring Access Control using ACM is
found in the whitepaper at http://go.microsoft.com/fwlink/?LinkID=150096,
and a simple tutorial is found at http://msdn.microsoft.com/en-us/library/
ee706752%28v=MSDN.10%29.aspx.

The lowest level of configuration in Access Control is a rule. Each rule specifies
something about a supported identity provider, such as the name, ID, algorithm, key,
or which actions users from this provider can perform. Rules are not configured or
used separately, but are done so as part of a RuleSet. Alongside a RuleSet, we also
configure a Token Policy, which sets the timeout for security token issued by Access
Control. Together, the RuleSet and Token Policy form the Scope. A service (such as
a web role) can have multiple scopes, and the scopes associated with a service are
collectively known as the Service Policy. A Service Policy is applied to a Service
Namespace, which organizes the rules for a resource and segregates transactions on the
billing statement (allowing us to use one AppFabric account for many applications).

Currently, only one RuleSet is allowed per scope, but each service can have multiple
scopes. Also, at the time of writing, a RuleSet cannot be shared across different
scopes—even if they contain the same information, the RuleSet must be created for
each scope.

Azure AppFabric

[182]

Requests and Simple Web Tokens
The point of this configuration is to be able to retrieve access tokens from Access
Control, so it's necessary to discuss the tokens themselves. Access Control returns a
type of token called a Simple Web Token (SWT). SWT is a recent token specification
developed by a group of Internet leaders, including Microsoft and Google. SWT was
developed to be structurally and cryptographically simple, and to be compact. The
small size of an SWT means it can be easily transmitted in HTTP headers or as part
of a querystring.

SWTs are a type of access token that are utilized in Web Resource Authentication
Protocol (WRAP), which is itself an extension of OAuth called OAuth-WRAP, and
the upcoming OAuth 2.0 specification.

For a little history, OAuth was developed in part by some of the developers of
OpenID. OpenID works great for an individual to log in to many websites with a
single credential; however, with the rise of web services and APIs, a better system
was needed. OAuth was designed to allow third-party applications to access secured
resources (such as TweetPhoto being able to post a new photo upload on the user's
Twitter account). OAuth was comprehensive, but also complicated to implement.
OAuth-WRAP is a subsequent implementation of OAuth, and served to rectify
some of the complaints about OAuth. On the other hand, OAuth 2.0 is an upcoming
upgrade to OAuth intended to simplify the protocol further. The specs and ongoing
discussion of WRAP and SWT can be found at http://groups.google.com/group/
oauth-wrap-wg.

Requests can be made for either a plaintext token or a simple web token (SWT).
All token requests sent to Access Control are made using HTTPS protocol and
form POST method. Request data are form-encoded, and the scope parameter
(named wrap_scope in the request) URL-encoded as well. SWTs are signed with
an HMACSHA256 signature.

The SWTs returned from Access Control are URL-encoded and are part of a longer
return string. To use them, we must parse them from the return string and decode
them. Additionally, we should ensure the token is valid before allowing the user to
access any secured resources. Validations should include confirming the signature is
a valid HMACSHA256 signature, whether or not the token has expired, and that the
issuer and audience values match what was requested.

Chapter 13

[183]

A raw token has the following format:

Issuer=https://<serviceNamespace>.accesscontrol.windows.net/WRAPv0.9/
&Audience=<requested appliesto>
&<claim type1>=<claim value1>,<claim value2>...<claim valueN>
&ExpiresOn=<expires date>
&HMACSHA256=<hmac signature>

Essentially, a token is just a series of name/value pairs. The HMAC256 signature
should always be the last name/value in the token.

Additional documentation about tokens and requests can be found at http://msdn.
microsoft.com/en-us/library/ee706734.aspx.

Configuring Access Control for Jupiter
Motors
It's now time to configure Access Control for the Jupiter Motors client application.
The first thing we need to do is plan who we want to access our web service, and
what actions can be performed. For this web service offered by Jupiter Motors, it's
pretty simple—only our client application should have access, and it can call any of
the three functions in the service. Just as a reminder, the functions are:

LoadStartupData: The function returns two datasets, one containing the
possible statuses for an order and the other containing the orders waiting
completion
GetStatusForOrder: This function returns the status of a selected order
AddOrderStatusUpdateToQueue: This function puts the status update into a
queue to be processed by our worker role

We need to create a ruleset allowing access to these functions, as well as the token
policies and scopes. As we're providing access to internally developed applications,
we can use the simple symmetric key functionality, similar to a user ID and
password. Additionally, we need to enable an SSL on our portal to secure the
data being transferred.

•

•
•

Azure AppFabric

[184]

Configuring Azure AppFabric Portal
Before any requests can be made of Azure AppFabric, we need to obtain the
Management Key. This key is included in the corresponding request to prove we are
able to make the request by having secret information. This key should be protected
carefully. To find the Management Key, we need to log in to the Azure AppFabric
portal at http://appfabric.azure.com/. After we've logged in, we can see
details of our project and the Service Namespaces, if there are any, as shown
in the following screenshot:

As we have an existing Service Namespace, we can click on its name to be taken
to the Service Namespace details page. The top section, named Manage, contains
both the Current Management Key and Previous Management Key. Both keys are
supported in case any key is changed before all existing applications are updated.

If there is no Service Namespace listed, or if we need to create a new Service
Namespace, there is a link on the project summary page (shown in the screenshot
prior to the preceding one) that we use to create a new Service Namespace. To create
a Service Namespace, we follow these steps:

Chapter 13

[185]

1. The first step in creating a new Service Namespace is to choose the name
we want to use to refer to the namespace. As the name we choose must be
unique across all of Azure, it's important to validate it.

2. The next step is to choose the region in which our Service Namespace is to
be run. At the time of writing, there were only four regions to choose from.
These regions do not refer to a particular data center, but to a geographic
region in which one or more data centers are located.

3. Finally, if we're planning to use the Service Bus, we can choose the number of
connections. We'll discuss more about this in the further sections, but we will
configure the connections at the same time.

Azure AppFabric

[186]

Configuration tools
At the time of writing, there is no way to configure Access Control via the portal. All
configuration steps must be performed using REST calls to the configuration service
from client tools. Fortunately, the Windows Azure AppFabric SDK (download from
http://go.microsoft.com/fwlink/?LinkID=129448) includes a tool called
ACM.exe that is used to configure Access Control. A full reference for ACM.EXE
can be found at http://msdn.microsoft.com/en-us/library/ee706706.aspx.
The C# source code is also included in case we need a reference, or we want to
develop our own configuration tool.

An additional tool called AcmBrowser is provided in the AppFabric samples.
The samples can be downloaded from http://go.microsoft.com/fwlink/
?LinkID=129448 and installed separately from the SDK. AcmBrowser is a GUI
tool that can be used to configure Access Control, and display the configuration
in a more user-friendly manner than Acm.exe. The AcmBrowser project is located
at <installfolder>\AccessControl\ExploringFeatures\Management\
AcmBrowser\ManagementBrowser. In order to use AcmBrowser, we have to open the
project and compile the tool. At the time of writing, Acm.exe is the recommended
tool to use, and it provides useful output, so we'll use it ourselves.

The acm.exe syntax is standard verb-noun:

acm.exe <command> <resource> [-option:<option value>]

If the only option is "-?", help for that command/resource will be returned. For
example, Tools>acm.exe -? returns the following help information:

Chapter 13

[187]

More detailed help is also available for individual commands:

For a complete overview of the commands, resources, and options, the MSDN
documentation is available at http://msdn.microsoft.com/en-us/library/
ee706706.aspx. Some of the options we need to include with every operation
toward Access Control are the Host, the Service Namespace, and the Management
Key. Looking once again at the management key shown above, we surely don't want
to have to type that too many times! Fortunately, we can add these three values to
the config files and omit them from the command line.

The Acm.exe and acm.exe.config files are installed by default at C:\Program
Files\Windows Azure platform AppFabric SDK\V1.0\Tools. We can edit the
config file to provide the three options. The host is defaulted to the management web
service address, accesscontrol.windows.net, and should not be changed. We can
copy and paste the values for the Service Namespace and Management Key from the
Azure AppFabric portal, creating the file shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="host" value="accesscontrol.windows.net"/>
 <add key="service" value="jupiter"/>
 <add key="mgmtkey" value="xr5BwkhSynQ+RwGbxGEkDUepB+zrF9p8qimhfqm
CPZ0="/>
 </appSettings>
</configuration>

At this point in the configuration process, we have a Service Namespace that does
not yet have a Service Policy.

Referring to the diagram under the Basics of Access Control configuration section, we
can see that we have Rule Sets, Token Policies, and Scopes to configure to create a
Service Policy.

Azure AppFabric

[188]

Two of the most useful commands in Acm.exe are get and getall. We use get
to retrieve information on a particular Scope/Token Policy/Rule/Issuer, and we
use the getall command to retrieve a list of all the Scopes/Token Policies/Rules/
Issuers. The ID of the object is needed for the get command. So, as we add objects to
Access Control, it's a good idea to record the details.

To confirm we don't have a scope in our Service Policy, we can use the
getall command:

Tools>acm.exe getall scope

The count of the scopes in our Service Policy will be shown in the output:

 Count: 0

The count of 0 confirms we do not have any scopes. We can repeat the process for
Rules, Token Policies, and Issuers.

Creating a Token Policy
A Token Policy dictates the lifetime of a token (to help prevent it from being reused)
and whether to autogenerate a signing key or use a static key. The command to
create a Token Policy is:

acm.exe create tokenpolicy

By adding the "-?" option, we can list all options available for this command, as
shown here:

Recall that the Service, Host, and Management Key are already set in the
configuration file. All we need to do to create a Token Policy is to set the name
and key value:

Tools>acm.exe create tokenpolicy -name:Delivery –autogeneratekey

Chapter 13

[189]

If our Token Policy is created successfully, the ID of the policy will be returned.

Object created successfully (ID:' tp_4ef493f23daf444ca50410a7d1852125')

When using the autogeneratekey option, the timeout is defaulted to 8 hours. If we
were using a static key, we'd specify the key value in the command (type carefully!).
For applications used in public environments, we would probably want to set the
timeout to a shorter value. Note that the ID begins with tp_. This differentiates the
Token Policy IDs from other Access Control IDs.

It's a good idea to store the information for each object we create in a password
keeper or database for future reference. We'll need the IDs for the next configuration
steps and in some of our applications.

If we need to retrieve the details of our Token Policy, we can again use the getall
command to retrieve the details of all Token Policies:

Tools>acm.exe getall tokenpolicy

We can see the ID of our Token Policy, as well as the friendly name, the timeout, and
the signing key issued to our request:

 Count: 1

 id: tp_4ef493f23daf444ca50410a7d1852125

 name: Delivery

 timeout: 28800

 key: l4K+qOU9OTo1dG3DWxluH+eTvsX/CBHhFbxLfxZcjC4=

Let's see how the get command works, specifying the ID as part of the options:

Tools>acm.exe get tokenpolicy

-id:tp_4ef493f23daf444ca50410a7d1852125

The following information is returned:

 id: tp_4ef493f23daf444ca50410a7d1852125

 name: Delivery

 timeout: 28800

 key: l4K+qOU9OTo1dG3DWxluH+eTvsX/CBHhFbxLfxZcjC4=

The information returned is the same as with the getall command. So far, so
good—now we need to create a scope, an issuer, and a rule.

Azure AppFabric

[190]

Configuring a Scope
A scope groups the rules and token policies as they relate to a specific URI. In order
to create a scope, we need to include the Token Policy ID we want associated with it.

Tools>acm.exe create scope -name:DeliveryScope

-appliesto:http://jupitermotors.com/deliveryservice

-tokenpolicyid:tp_4ef493f23daf444ca50410a7d1852125

If our scope creation is successful, the ID of the scope is returned.

Object created successfully (ID:'scp_334a7c77845e7ac20764300da9119c434ffc
c65d')

The IDs for scopes begin with scp_, just as the IDs for token policies began with
tp_. We now have a scope, tied to a URI and with a token policy. We need this ID to
create a rule, so it's a good idea to copy and paste this ID. It's now time to create an
issuer and a rule.

Configuring an Issuer
An Issuer is another name for an Identity Provider. Users create accounts with
Identity Providers, and Identity Providers issue claims to consuming services. In
the current scenario, Access Control is the identity consumer. We establish a trust
between Access Control and the Issuer with a secret key provided by the Issuer. The
ultimate claims consumer—our local application—isn't concerned with anything
other than a trust relationship with Access Control.

Tools>acm.exe create issuer -name:jupiter -issuername:jupiter -
autogeneratekey

Object created successfully (ID:'iss_
a2f7fcb5afeb7983ffbb6ce3d1a7e91edf321350')

If our issuer is created successfully, the ID is returned. As with all the other IDs
we've created, Issuer IDs begin with a distinct prefix. We'll use this ID to create a rule
allowing access to applications presenting the correct key, so be sure to copy and
paste it, too.

Configuring a Rule
Rules are where the magic happens. We'll use Rules to map claims, and we use
rules to configure trusts with Issuers. The mapping is done with the inclaimtype,
inclaimvalue, outclaimtype, and outclaimvalue options.

Chapter 13

[191]

When we create a Rule, we need to include a Scope ID and an Issuer ID. Because the
IDs are long, it might be easiest to build the command in a text editor first, and then
copy the command to the command window.

Tools>acm.exe create rule -name:jupiterrule1 -scopeid:scp_
334a7c77845e7ac2076430

0da9119c434ffcc65d -inclaimissuerid:iss_
a2f7fcb5afeb7983ffbb6ce3d1a7e91edf321350

 -inclaimtype:Issuer -inclaimvalue:jupiter -outclaimtype:role -
outclaimvalue:user

On success, the rule ID is returned, which begins with rul_.

Object created successfully (ID:'rul_
42db52d7749770ca2f585ddc1b992adecb8b76bf93f

b4ba4e250ab8acfd387b647ff644ffafcb5f4')

We have now created a rule that says anyone who presents a valid key from the
"jupiter" issuer is placed in the user role. As we add additional identity providers to
our service policy, we need to perform only these four configuration steps to map
visitors into the "users" role.

Configuring a client application for Access Control
When a service is secured by Access Control, a client does not make its first request
directly to the service. Instead, we need to perform the following steps:

1. Request a token from Access Control.
2. Split the token out of the response from Access Control.
3. Build the service request, including the necessary parameters and the token.
4. Issue the service request.
5. Receive and process the response from the service.

A client can cache the token and use it until the token expires. Once a token expires,
the client application must request a new token before it can make any additional
requests from the service.

Azure AppFabric

[192]

In order to request a token from Access Control, we need to know the Service
Namespace, the scope, and the issuer key. Because these values may change
(especially the issuer key), it's advisable to place them in the application settings
or our client application:

Requesting the Token
The first modification to our code is we need to add two Imports statements:

Imports System.Net
Imports System.Collections.Specialized

We now create a POST request to Access Control, and pass the IssuerKey and Scope
settings we defined earlier. The response is returned as a byte array, which we then
convert to a UTF8 encoded string:

Dim _client As New WebClient()
_client.BaseAddress = String.Format("https://{0}.accesscontrol.
windows.net/", My.Settings.ServiceNamespace)

Dim _values As New NameValueCollection()
_values.Add("wrap_name", "wcfauthmanager")
_values.Add("wrap_password", My.Settings.IssuerKey)
_values.Add("wrap_scope", My.Settings.Scope)

Dim _responseBytes() As Byte = _client.UploadValues("WRAPv0.9/",
"POST", _values)

Dim _response As String = System.Text.Encoding.UTF8.GetString(_
responseBytes)

At this point, we now have our token, but it's part of a much larger string. We
have to unpack the token by splitting apart the name/value pairs with the name
wrap_access_token=, and taking the value:

Dim _pairs() As String = _response.Split("&"c)

Dim _tokenPair As String = From p In _pairs Select p Where
p.Contains("wrap_access_token=")

Dim _token As String = _tokenPair.Split("="c)(1)

Chapter 13

[193]

Now we're ready to make requests from our web service. This will require some
changes to previously written and tested code. If our client project doesn't have
references for System.ServiceModel and System.ServiceModel.Web, these need
to be added. We also need to add an Imports System.ServiceModel to our form.

As we need to modify the request headers to include the token, we'll need to create
a request proxy, add the token (remember we need to UrlDecode the token) as the
"authorization" header, and then call the service.

Private Function LoadFormStartupData(ByVal _token As String) As
DataSet

Dim _startup As DataSet

Dim _binding As New WebHttpBinding(WebHttpSecurityMode.None)
Dim _address As New Uri(My.Settings.Scope)

Dim _channelFactory As New WebChannelFactory(Of ERPServiceReference.
IERPServiceChannel)(_binding, _address)

Dim _proxy As ERPServiceReference.IERPServiceChannel = _
channelFactory.CreateChannel()

Using TempOperationContextScope As OperationContextScope = New Operati
onContextScope(TryCast(_proxy, IContextChannel))

Dim authHeaderValue As String = String.Format("WRAP access_
token=""{0}""", System.Web.HttpUtility.UrlDecode(_token))

WebOperationContext.Current.OutgoingRequest.Headers.
Add("authorization", authHeaderValue)

_startup = _proxy.LoadStartupData

End Using

CType(_proxy, IClientChannel).Close()
_channelFactory.Close()

Return _startup
End Function

Azure AppFabric

[194]

Using Access Control in a web service
We're now set to add Access Control to our web service. We have a couple of
configuration values we need, and a config file is the ideal place, in case we need
to edit these values later. The usual place is in a web.config file, but recall that the
web.config files are deployed as part of the compiled binary on Azure. Instead, we
need to use the csconfig file. The two settings we need to add are the Token Policy
ID and the Service Namespace. We use these as our known values when we compare
the tokens presented by the client application.

To add our settings to the WCF Role's csconfig file, right-click the
JupiterMotorsWCFRole, listed under the Roles folder, and select Properties.

On the Settings tab, add our two settings.

Before we accept any tokens presented to us, we need to validate them. We
can write our own token validation, but the AppFabric SDK includes a couple
of classes we can use as a starting point. The WCFAuthorizationManager
project (found in <%install_path%>\Access Control\Exploring Features)
contains an ACSAuthorizationManager class and a TokenValidator
class we can use. ACSAuthorizationManager is an implementation of
ServiceAuthorizationManager, and performs the following verifications
of a request:

Chapter 13

[195]

It checks whether there is an authorization entry in the request headers. If
not, the request is rejected.
If there is an authorization token in the request headers, call the
TokenValidator.Validate method. If the token is not valid, the request
is rejected.
Claims are extracted from the token, including a claim of type "action".
We then determine what action the user is attempting to perform (or what
method is being called). If there is no action, the request is rejected.
If all checks out, the action is allowed.

The TokenValidator class performs the following verifications of the token:

Confirms the HMAC signature is valid
Confirms the token has not expired
Confirms the issuer is trusted
Confirms the audience is trusted

We should add these two files to the JupiterMotorsWCFRole project. We may
need to add a missing reference to System.ServiceModel.Web in order for the
project to compile.

Service Bus
If you hear "Service Bus" and think of the Enterprise Service Bus (ESB) pattern, you'reEnterprise Service Bus (ESB) pattern, you're pattern, you're
on to something. The name is no accident—the Azure Service Bus is designed to be
an implementation of the ESB pattern.

If you're not familiar with the ESB, then for this discussion you need to know it's a
systems architecture that connects any number of enterprise applications through a
single intermediate, known as the "bus". The bus brokers messages between systems
and handles authentication, among other functions. The software found in an ESB
implementation is often known as "middleware". The typical ESB pattern is used to
connect applications within the same enterprise.

The Service Bus handles similar functions as an ESB, but between applications
in different enterprises. The Service Bus can securely relay messages from other
enterprises to and from WCF endpoints hosted behind our firewall. In this relay
mode, we do not need to open ports or reconfigure our firewall. The Service Bus
can also facilitate direct connections between applications in two enterprises.

•

•

•

•

•
•
•
•

Azure AppFabric

[196]

Our current portal design doesn't include a need for the Service Bus, but it's a feature
we want to keep our eyes on for future use (one of our portal project managers
mentioned there was some talk of integrating third-party dealership applications),
so we'll discuss it here as we're working in the AppFabric. The official MSDN
documentation for the Service Bus is located at http://msdn.microsoft.com/en-
us/library/ee732537.aspx. For an additional reference, Channel 9 has made
available a Windows Azure Service Bus Training Course documentation at
http://channel9.msdn.com/learn/courses/Azure/ServiceBus/.

Service Bus as message relay
If we're going to integrate a third-party dealership application, we need a way
to exchange messages with it from our ERP system. Customers want to know
the available options, price, and time to delivery, and orders need to be placed
automatically, so there may be several messages exchanged between systems.
Compounding the work is the need to support many third-party systems used
by a large number of dealers, all the while keeping our internal network secure.

To integrate with a number of third-party applications, web services are the way to
go. However, we don't want to open our system to the world, and we don't want
to be forced into implementing special configurations (such as router whitelists) for
every dealer. This is where Service Bus is of great help.

One of the functions of Service Bus is as a message relay. We would only need
to connect our systems with Service Bus, and use the Service Bus as our public
endpoint. Clients make requests to Service Bus and, if the requests authenticate
properly, the requests are relayed to our systems. Our responses are sent to the
Service Bus, and are then relayed back to the clients. Messages are relayed
between our systems and the Service Bus via a persistent two-way connection.

This approach has a number of advantages:

As the connection between our applications and the Service Bus originates
from our systems, and is a two-way connection, there is no need for NAT
rules or firewall exceptions.
The Service Bus has a stable URL and a message buffer, in case our systems
disconnect. Should our systems fail and we need to invoke our disaster
recovery plan, messages to our system can be buffered, and retrieved
once our system is online again. Our clients won't see any interruption.
Our systems are shielded against attacks such as denial-of-service, as the
actual service address would not be known. The DoS attack would be
directed against Azure (which has the resources and security to deal
with such attacks), rather than our internal systems.

•

•

•

Chapter 13

[197]

There are also a couple of disadvantages to consider:

We must pay for an additional service, which introduces some direct cost.
Configuration is stored on a distant system, ultimately out of the control
of our network administrators. Our network administrators may not like
that idea.
We'll need to make some changes in our programming to support persistent
connections and other aspects of the Service Bus.

Service Bus as connection broker
If relaying messages isn't to our liking, there is a second option. Service Bus can
broker direct connections between our system and the third-party system. The
process starts with third-party systems making a request to Service Bus, which
has an open connection from our system. The service bus then facilitates the two
connections, finding a common protocol on which to communicate, and the two
applications then use a direct connection. Either of these two scenarios may be of
interest to us should the rumored third-party integration become reality.

Summary
In this chapter, we examined the Windows Azure AppFabric. The two services that
comprise AppFabric are Access Control and Service Bus. Access Control issues
signed web tokens (SWT) as part of a claims-based identity system, and can be used
by applications hosted both on Azure and on premises. Access Control currently
supports symmetric key and ADFS v2, and the stated long-term goal is to federate
the major identity providers, greatly reducing the amount of time and work in order
for our applications to support these identity providers. We then configured Access
Control to be used by our delivery confirmation application.

We also examined the Service Bus, which facilitates communications between
applications located in two different enterprises. The Service Bus can operate as a
message relay or a connection broker, and these functions may be of interest to us in
a future phase of our project.

•
•

•

Azure Monitoring and
Diagnostics

When we host a site on our own servers, we have complete and direct access to the
event logs, the IIS logs, and the performance counters. When something is amiss,
these resources are our first stop for diagnostic information, and more often than
not, the answer is found in these resources. Because we can't access an Azure
instance in the same way as we connect via Remote Desktop to our on-premises
server, how do we get the same information? Fortunately, Microsoft has provided
mechanisms for us, and that's what we'll explore here (Microsoft has announced
Remote Desktop access to Azure instances, as well as improved diagnostics, but
those are not available at the time of writing). In this chapter, we'll cover the
following topics:

Examining what information can be collected via Azure diagnostics
Learning how to enable collection of diagnostic data
Implementing diagnostic data collection in our portal app
Persisting collected data in the proper storage service

•

•

•

•

Azure Monitoring and Diagnostics

[200]

Azure Diagnostics—under the hood
When we consider working with Azure diagnostics, we need to decide what to
collect and how to store the collected data. The following table summarizes the
information available to us:

Data Collected
by default

Role(s) Storage Storage location name

Windows
Azure logs

Yes Web,
Worker

Table WadLogsTable

IIS logs Yes Web Blob wad-iis-logfiles

Windows
diagnostic logs

Yes Web,
Worker

Table WadLogsTable

Failed request
logs

No Web Blob wad-iis-failedreqlogfiles

Windows
event logs

No Web,
Worker

Table WadWindowsEventLogsTable

Performance
counters

No Web,
Worker

Table WadPerformanceCountersTable

Crash dumps No Web,
Worker

Blob wad-crash-dumps

Custom error
logs

No Web,
Worker

Blob user defined storage

On a traditional Windows system, IIS logs, crash dumps and failed request logs
would be stored in files. These three logs are referred to as Directory logs in Azure's
jargon, and end up in blobs. Except for custom logs, the rest of the logs are all
persisted in tables.

During data collection, information is buffered in a blob, inside a container
named wad-control-container. Diagnostic data are not accessible until they
are transferred from wad-control-container to the proper blob or table
storage. The diagnostic buffers can be manipulated via descendants of the
DiagnosticDataBufferConfiguration class, an overview of which can be found at
http://nmackenzie.spaces.live.com/blog/cns!B863FF075995D18A!536.entry.

There is also a much more sophisticated framework for logging and tracing,
based in part on the Event Tracing for Windows (ETW) framework we
may already be familiar with. Samples are available for downloading at
http://code.msdn.microsoft.com/WADiagnostics. Microsoft also provides a
number of additional samples in the Azure SDK and other sample downloads.

Chapter 14

[201]

Diagnostic ETW data are available through classes in the System.Diagnostics
namespace. Windows Azure Diagnostics extends this namespace with the
Microsoft.WindowsAzure.Diagnostics namespace. References for the Microsoft.
WindowsAzure.Diagnostics can be found at http://msdn.microsoft.com/en-
us/library/microsoft.windowsazure.diagnostics.aspx and http://msdn.
microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.
management.aspx. As a general outline, when we implement logging, the
general process flow looks like the following diagram:

In the architecture depicted in this diagram, our application pipes diagnostic
data through TraceSources, which are intermediate objects (of type System.
Diagnostics.TraceSource) used to route data to various endpoints. A
SourceSwitch, where we see values such as "verbose" or "critical", determines
which messages should be passed to the DiagnosticMonitorTraceListener. On a
normal system, verbose data could be routed through a TraceSource with a log file
endpoint, while critical errors might be routed through a TraceSource that sends a
text message to a sysadmin.

TraceListeners subscribe to TraceSources, and route the data to the desired
endpoint. The default TraceListener in Azure is the DiagnosticMonitor, which
is a special class used to configure the collection of diagnostic data. A diagnostic
monitor can be configured to listen to a number of TraceSources. In Azure,
diagnostic data are all routed to either Table or Blob Storage.

The three logs indicated as being part of the default Diagnostic Monitor collection—
Azure, IIS 7, and Windows Diagnostic—are enabled by default when we use one of
the Azure templates. Because our sample is using a default template, there is nothing
much that we have to do. If we were to use our own template, we'd have to make
sure we included the initialization (refer to http://msdn.microsoft.com/en-us/
library/ee843890.aspx). The other logs can be collected, but additional coding is
required to activate them.

Although we may activate log collection, that does not make the log data available to
us immediately upon collection. We also need to transfer the log data to a store we
can access, such as Table Storage. This must be done whether we're using the default
Diagnostic Monitor or we've activated an additional log source.

Azure Monitoring and Diagnostics

[202]

The Hello Fabric sample in the Azure SDK is a useful reference for experimenting
with diagnostic logging. It's a very simple application that can be run in the
development fabric on a development machine.

Enabling diagnostic logging
When we create an Azure application using one of the default templates, collection
of Windows Azure, IIS, and Windows Diagnostic logs is enabled by default. We can
see the setup in the template files..

The DiagnosticMonitorTraceListener configuration for our WCF and web role
projects is found in the web.config file:

 <system.diagnostics><system.diagnostics>
 <trace>
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics.
DiagnosticMonitorTraceListener, Microsoft.WindowsAzure.Diagnostics,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
name="AzureDiagnostics">
 <filter type=""/>
 </add>
 </listeners>
 </trace>
 </system.diagnostics>

There are a number of additional configuration options in the <system.
diagnostics> element; complete documentation can be found at http://msdn.
microsoft.com/en-us/library/1txedc80.aspx. Specifically, the <filter>
element (http://msdn.microsoft.com/en-us/library/ms229326.aspx) is
used to set the SourceSwitch filtering values.

The DiagnosticMonitorTraceListener is started in our projects' OnStart method,
found in the webrole.vb file:

 Public Overrides Function OnStart() As BooleanPublic Overrides Function OnStart() As Boolean

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 ...
 End Function

Chapter 14

[203]

In our workerrole.vb file, we have the following entry in the Run method that logs
the start of the role.

Public Overrides Sub Run()

Trace.WriteLine("JupiterMotorsWorkerRole entry point called.",
"Information")

...

End Sub

If we weren't using a template, we'd need to add this code manually to the proper
files to enable collection of diagnostic data.

Enabling the additional logging types is easy, but not all the logs are implemented
in the same way. For instance, the Failed Request Logs are enabled by editing the
web.config file, whereas the Windows Event Logs are enabled with some code in
the Role.OnStart method. The MSDN documentation for enabling other sources
of diagnostic information can be found at http://msdn.microsoft.com/en-us/
library/ee843890.aspx.

One of the more interesting and useful sources of diagnostic information is
performance counters. We've all probably used performance counters in the
past when debugging all sorts of issues, and Azure provides us with the same
capabilities. The downside to performance counters is that we configure them in
the Role.OnStart() method, so we must redeploy our application if we want to
change them. One possibility would be to preconfigure a number of performance
counters, wrapped in if...then blocks that check for values in the config files. This
way, we can turn collection of performance counters on and off by editing the proper
config file. The following is the configuration for the % Processor Time counter.
Note that there is a very specific format used for the CounterSpecifier. For
additional information on this naming format, we can review the documentation
at http://msdn.microsoft.com/en-us/library/aa373193%28VS.85%29.aspx.

Public Overrides Function OnStart() As Boolean

Dim diagConfig As DiagnosticMonitorConfiguration = DiagnosticMonitor.
GetDefaultInitialConfiguration()

Dim procTimeConfig As PerformanceCounterConfiguration = New
PerformanceCounterConfiguration()

procTimeConfig.CounterSpecifier = "\Processor(*)\% Processor Time"

Azure Monitoring and Diagnostics

[204]

procTimeConfig.SampleRate = System.TimeSpan.FromSeconds(1.0)

diagConfig.PerformanceCounters.DataSources.Add(procTimeConfig)

DiagnosticMonitor.Start("DiagnosticsConnectionString")

Return MyBase.OnStart()

End Function

A list of available performance counters can be found at
http://technet.microsoft.com/en-us/library/cc774901(WS.10).aspx.

Diagnostic configuration is not global—configuration applies only to the role where
we have added the code. We need to be sure to configure data collection for each and
every role we want to be able to debug (which is pretty much every role). If we're
interested in the same information, it's just copy-and-paste code, but we still need to
remember to do it.

Changing the location of the logging
configuration
In an ASP.NET application, the usual place to configure SourceSwitches and other
configuration details is in the web.config file. This way, if we need to change the
level of diagnostic information collected, we can simply edit the web.config and
commence debugging. By default, the diagnostic configuration information for an
Azure application is stored in the web.config file. However, Azure applications
are not deployed in the same way as ASP.NET applications. Azure applications
are compiled into a single file and deployed as a single file. We cannot simply
edit a web.config (or an app.config in the case of a worker role) once an Azure
application is deployed. If we need to edit the web.config or app.config, we
would need to edit the files locally and redeploy the entire application post-edit.

With Azure applications, the recommendation is to duplicate configuration settings
into both the web.config and the .cscfg file. The .cscfg file can be changed while
the application is running, but the web.config cannot be changed in the application.
This setup requires a little extra effort at the beginning, but the effort can be worth it
when needed. The idea behind duplicating the configuration is that an application
can be deployed on Azure, and then later redeployed on premises without any
additional modification. If this application is sure to not be deployed on IIS, the
web.config edit can be skipped.

Chapter 14

[205]

The easiest way to add the required settings to the .cscfg file is to open the Roles
subfolder, right-click the role we want to modify, and choose Properties.

In the Properties panel, select the Settings tab, click the Add Setting button, and add
a String setting. This setting will act as our SourceSwitch and help us determine the
level of information we want to capture.

Adding a setting via the Properties panel makes an entry in both the .cscfg and the
.csdef files. The .csdef file must contain a definition for every setting in the .cscfg
file, and cannot be edited in a live application. Therefore, we cannot add additional
settings to a live application, but we can change their values.

The final step is to add a few lines of code to help our application determine if
it's running on IIS or Azure. We simply need to check for RoleEnvironment.
IsAvailable, which is available only in Azure.

Dim _debugLevel As String
If RoleEnvironment.IsAvailable Then
 ' gets the value from .cscfg file

_debugLevel = RoleEnvironment.GetConfigurationSettingValue(
 "DebugLevel")
Else
 ' gets the value from web.config file
 _debugLevel = WebConfigurationManager.AppSettings("DebugLevel")
End If

Azure Monitoring and Diagnostics

[206]

The template projects include configuration settings for
DiagnosticsConnectionString and DataConnectionString. By default, these
connections point to a local SQL Server Express instance on our development
machines, and obviously the connection strings need to be updated when we deploy
our application. Again, if we weren't using a default template, we'd need to add
these configuration settings too.

There are two useful resources about working with diagnostic logging and
configuration files in Azure—one is an MSDN article titled Take Control of Logging
and Tracing in Windows Azure (http://msdn.microsoft.com/en-us/magazine/
ff714589.aspx), and a code project article titled Windows Azure Development Deep
Dive: Working With Configuration (http://www.codeproject.com/KB/azure/azure-
configuration.aspx), on which part of the MSDN article is based.

Logging config data in our application
Now that we have the collection of diagnostic data configured, we need to add code
to our application to send diagnostic data to the listeners. We can do this simply by
making calls to the methods in the System.Diagnostics.Trace class (documented
at http://msdn.microsoft.com/en-us/library/36hhw2t6.aspx).

One of the more common methods we'll call is Trace.Writeline, as seen here:

Trace.Writeline("An error has occurred!","Error")

If our filter is set to the value Error or higher, our message would be logged. An
alternative, easier syntax is:

Trace.TraceError("An error has occurred!")

Again, if our filter is set to the value Error or higher, our message will be logged.
The simplified methods are limited to TraceError, TraceInformation, and
TraceWarning, whereas the WriteLine method can be used to log diagnostic
data at any level, including custom levels.

Transferring and persisting diagnostic
data
As diagnostic data are logged, the data are buffered in memory. In order for us to
retain the data for analysis, we need to make sure that the data persists in a proper
storage container. This is not set up by default, but it takes only a couple of lines
of code to configure the transfer of data into the storage location. We can set this
transfer to be either scheduled, or on demand.

Chapter 14

[207]

To automatically transfer the diagnostic data on a schedule, we just need to add a
single line to our role's OnStart method:

diagConfig.PerformanceCounters.ScheduledTransferPeriod = System.
TimeSpan.FromMinutes(1.0)

The entire OnStart method for our web role now reads like this:

Public Overrides Function OnStart() As Boolean
 Dim diagConfig As DiagnosticMonitorConfiguration =
 DiagnosticMonitor.GetDefaultInitialConfiguration()
 Dim procTimeConfig As PerformanceCounterConfiguration =
 New PerformanceCounterConfiguration()
 procTimeConfig.CounterSpecifier = "\Processor(*)\% Processor Time"
 procTimeConfig.SampleRate = System.TimeSpan.FromSeconds(1.0)
 diagConfig.PerformanceCounters.DataSources.Add(procTimeConfig)

 diagConfig.PerformanceCounters.ScheduledTransferPeriod =
 System.TimeSpan.FromMinutes(1.0)

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 Return MyBase.OnStart()
End Function

We'll need to add similar code to the OnStart methods of the other roles in our
application if we want to automatically transfer the diagnostic logs for those
roles too.

An on-demand transfer is a little different—an on-demand transfer can be initiated
either from within the role, from another role in the same application, or even a
completely different application. To reduce the amount of diagnostic data we need
to sort through when debugging, we might want to log every level of diagnostic data
but transfer the diagnostic data only when an error occurs.

 Public Sub TransferDiagnosticData()

 Dim diagManager As DeploymentDiagnosticManager =
 New DeploymentDiagnosticManager(<Azure storage account
 name>, <Azure deployment ID>)

 dim roleInstDiagMgr as RoleInstanceDiagnosticManager =
 diagManager.GetRoleInstanceDiagnosticManager(
 <Role name>, <Role instance name>)

 Dim dataBuffersToTransfer As DataBufferName =
 DataBufferName.Directories

Azure Monitoring and Diagnostics

[208]

 Dim transferOptions As OnDemandTransferOptions =
 New OnDemandTransferOptions()

 With transferOptions
 .From = DateTime.MinValue
 .To = DateTime.UtcNow
 End With

 Dim requestID As Guid =
 roleInstDiagMgr.BeginOnDemandTransfer(dataBuffersToTransfer,
 transferOptions)

 End Sub

Complete documentation for transferring buffered data to storage can be found at
http://msdn.microsoft.com/en-us/library/ee830425.aspx.

It's important to note that diagnostic data is treated the same as any other data
associated with our application, and we will be charged for the storage of the
diagnostic output.

Accessing stored data
Once we've transferred the diagnostic data to storage, we can access it for analysis.
Accessing log data is the same as accessing any other Table or Blob Storage. The most
convenient way may be using the REST interface documented earlier in this book.

As Azure becomes more popular, third-party diagnostic tools will be developed.
One such tool already available is the Cerebrata Azure Diagnostics Manager, found
at http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.
aspx. Hundreds of Azure-related applications have been added to Codeplex as well,
but many of these projects have withered.

Summary
In this chapter, we looked at the diagnostic information available to us in Azure,
how to capture that information, and how to access the information once captured.
Azure provides us with a familiar set of diagnostic information, which we can enable
with very little work. Once enabled, we must make sure that the diagnostic data
persists in either Table or Blob Storage where we can access the data as we would
any other table or blob, or we can use a third-party tool designed specifically for
diagnostic analysis.

Deploying to Windows Azure
It's the time we've been waiting for. We've successfully developed, tested, and
debugged our application locally. Now all we need to do is to get it in the cloud
for the others to start using! In this chapter, we'll cover:

Configuring the Windows Azure portal with our projects and services
Preparing our application for deployment
Deploying our application
Running our application post-deployment

Setting up hosted service in Windows
Azure
We already have set up our project under Windows Live ID in the Windows Azure
Developer portal (Chapter 5, Introduction to SQL Azure), but we don't have our hosted, but we don't have our hosted
service yet. It will take only a few minutes to set it up and get it ready for our project.

The first thing to do is to log into the portal at http://www.windows.azure.com.
Once we have logged in, we will see all of our Windows Azure projects under My
Projects (in this case, we have only one; yet, as growth happens in the cloud, we can
host multiple projects under a single Windows Live ID).

•

•

•

•

Deploying to Windows Azure

[210]

We need to click on our project name to get access to our services.

In this next screen in the portal, we see two easy links to get started on adding a new
service. Click either of the circled links:

There are two different types of services for Windows Azure: Storage Account and
Hosted Services. We learned about the Storage Account service when we first went
over our Blob, Queue, and Table Storage, but what is this Hosted Service? It's the
home for our applications (web and worker roles), configuration, and settings on
the Windows Azure Fabric Controller. Choose the Hosted Services to continue our
setup process.

Chapter 15

[211]

Setting Hosted Service identifiers
Once we pick the Hosted Service, it's time to configure the service. In the first step
of the setup, we'll have to choose a label (name) and description for the service.
These names and descriptions are just friendly identifiers for the service, and are
used in the Windows Azure Developer portal, Visual Studio Publishing Wizard,
and the Windows Azure Management Tool (http://code.msdn.microsoft.com/
windowsazuremmc).

Deploying to Windows Azure

[212]

After we've put a label and description to our Hosted Service, click the Next button
to move onto the second page of the workflow, where we'll define our Public Service
Name for our public URL. This must be globally unique, so we must choose a name
that no other Hosted Service is currently using. There is a button conveniently
located next to the control that allows us to check the availability of the chosen name.
As we see, the label beneath the form indicates that the name we have chosen for our
public URL is available.

Affinity Groups—geographically grouping
services
Next, we'll choose an Affinity Group for our Hosted Service. Affinity Groups are a
nice way to allow us to choose where our applications and services will live, and also
gives us some key benefits. By creating an Affinity Group and assigning services to
the group, a few things happen.

First, Windows Azure makes the best effort to put all of the assigned services into
a single data center in the specified geographic region. What does this do? Well, it
helps execute faster transactions between services within the same data center.
There will be fewer hops in the network for communication between the services.

Another benefit to keeping your dependent services in a single affinity group is
that Microsoft doesn't charge for bandwidth used within data center region. This
will help keep costs lower as the services will not need to leave the data center for
communication between each other, and you will not be billed for bandwidth related
to the communications. However, note that transactions are still billable even when
in the same data center, so it's not entirely free to communicate between services
within the same data center.

One last thing to consider when choosing our Affinity Group is where the majority
of our users will be. If we have a concentrated area of traffic from our customers,
it's best to choose the region closest to that area. That will speed up the request and
response time from and to our customers over the Internet.

Chapter 15

[213]

For our example, imagine our customer base is mainly in the United States, primarily
in the Chicago, IL area. As this area is in the central US, toward the northern
end of the country, we are going to choose the North Central US region for our
Affinity Group. Because we've already set up our storage account, we're going
to tell Windows Azure that we have another service that is related to this Hosted
Service and that we wish to create a new Affinity Group. Our Affinity Group will be
descriptively named North Central United States. Click the Create button, and we're
all finished for now.

Preparation application for deployment
Because we've been using our configuration files for our connection strings in the
cloud project, we need to make a few small changes. Let's change the connection
strings in our configuration files in Visual Studio.

In our cloud project, for each role in our Roles folder, we need to perform the
following steps:

1. Right-click the role and choose Properties.

Deploying to Windows Azure

[214]

2. Choose the Settings tab, and you should see our connection strings pointing
to our Development Storage.

3. These connection strings will be required to change to point to our Storage
Account in the cloud. This can be easily done by clicking the "..." button to
the far right of the connection string. It's going to ask us for some information
such as the account name and the account key, both of which were provided
when setting up the Storage Account. We can look these up in the Windows
Azure Developer portal if we cannot remember them.

4. Finally, the last step is to publish the cloud project. We can easily do this
by right-clicking on the cloud project and choosing Publish.... We will get
a window once again, asking us how we want to publish our cloud project.
We have an option of creating the Service Package only, or deploying
directly to Windows Azure. Because we love working in the Windows Azure
Developer portal, we're just going to select the Create the Service Package
Only option, which will help package everything up into two files—one is
.cspkg file, which is our compiled code for our cloud project roles, and the
other is the .cscfg file, which is our configuration settings file for our cloud
project roles.

Chapter 15

[215]

Ready for deployment
It's time to play in the Windows Azure Developer portal once again. We're going
to give it all the information needed to get our cloud project up and running in
Windows Azure.

Let's go to our Hosted Service and see what we have there.

Deploying to Windows Azure

[216]

This looks nice and easy. What did we come here to do? The answer is to deploy
our cloud project. And how are we going to do that? If you are thinking we should
click on the Deploy... button, then you're absolutely correct. Go ahead and click the
Deploy... button to begin deployment.

The next step is also fairly easy. Remember the files that Visual Studio created for us
when we published the cloud project? We're going to need them here. Both files were
created in the solution's Bin folder, under the release configuration named folder
(Debug, Release, etc.), and in the Publish folder. The first file we're looking for is
the Application Package file, or the .cspkg file. The Configuration Settings file is the
.cscfg file.

The next section on the deployment page asks about Operating System Settings.
What's this? Well, each role instance is technically a miniature virtual machine
running in the Windows Azure Fabric, and the virtual machine needs an OS. The OS
builds are a miniature version of Windows Server 2008 (limited feature set). This OS
is constantly worked on to patch any security flaws, fix bugs, and all the other typical
everyday maintenance you would expect a company to do to maintain a server
OS. There are options on which OS version we would like our applications to run
against if we choose the Manual OS Upgrade Method. Here's the catch: Depending
on which SDK we built our application with, we need to choose a compatible OS to
use. To choose the correct OS, click the What are the Options? link and the article
maintained by Microsoft will let you know the minimum OS that can be used. All
SDKs are supported by the newer operating systems.

Because the newest OS version supports our SDK, we're going to let Windows
Azure automatically upgrade our OS and choose the newest OS for us at time
of deployment.

Finally, we need to name (label) our deployment. This is just to help us know about
this deployment. We could use a release or version number, a timestamp, among
other things, to help us know what is deployed.

Once these steps are all completed, click the Deploy button and let Windows Azure
do some magic!

Chapter 15

[217]

The Windows Azure Developer portal will keep us updated on the progress of
the deployment.

Congratulations! Our cloud project is deployed! Are we done? Well, the answer is
not at all. It's in the cloud, but it's not doing anything yet. We'll get to that in a little
while, but first, let's have a quick look at changing the configuration in the portal.

Deploying to Windows Azure

[218]

Changing live configuration
We don't need to change the configuration in Visual Studio and redeploy our cloud
package just to make configuration setting changes. We're provided with a nice text
editor in the portal to make changes on the fly. Assume our connection string needs
to be changed, we can do that. Need more instances of a role, we can manage that
as well!

To do this, go to our Hosted Service page and click the Configure... button below our
deployed package (cube).

The page with the text editor will be displayed. We can make our changes right in
this textbox if we want. We can also upload a new configuration file from our Visual
Studio build. Make the necessary changes or browse to the new file and click the
Upload button. Once the changes have been made manually or the new file has
been uploaded, click the Save button.

Chapter 15

[219]

Upgrading the deployment
We have an option to upgrade our deployment on the fly in the portal. At our
Hosted Service page, all we need to do is click the Upgrade... button. A quick
note for us to remember: we can upgrade a deployment as long as service model is
identical. In other words, we cannot upgrade if we added or deleted a role to our
cloud project.

We will be asked a lot of the same information as the initial deployment (Application
Package file, Configuration Settings file, Operating System Settings, and Deployment
Name) but we do have two new options: Upgrade Mode and Service Upgrade.

For the Upgrade Mode, we can choose whether we want Windows Azure to upgrade
our upgrade domains in sequence, or if we want to upgrade manually. Wait a
second! We first need to understand what an upgrade domain. Upgrade domains are
logical groupings of running instances. There are two upgrade domains by default.
For example, imagine we had one role, with 10 different instances of it running. Now
that there are two upgrade domains, each one would have five instances. With this
upgrade mode, we could have Windows Azure automatically upgrade the first five
instances in the first upgrade domain, followed by the next five instances in the other
upgrade domain, or we could do it ourselves (maybe we want to upgrade the second
upgrade domain first, then upgrade the first one).

Deploying to Windows Azure

[220]

The next part of the upgrade process that we haven't yet seen is the Service Upgrade.
What's this? With service upgrade, we can update only one role in the cloud project.
Consider this example. We find out one of our roles has a bug in it and we fix it. Do
we really need to upgrade everything? No, we don't have to tinker with anything
else. What's the first rule we should always follow? Never touch anything more than
we need, especially if it's running perfectly as it is. This allows us to do just that!

Once you have finished filling out all of these options and information, just click the
Deploy button.

Running the deployment
It's the time that we all have been waiting for! We've deployed, changed
configuration, and upgraded the deployment. Now it's time to get it running!

On our Hosted Service page, all we need to do it click the Run button to get
things underway.

Chapter 15

[221]

Once again, during the process when the deployment is started, the portal will give
us updates along the way. Once you see the green checkmarks alongside each of our
roles, we know it's all done and running!

At this point, we should be able to go to the URL below our deployment and see our
application in action! It should act identical to our application in our development
fabric as long as we choose a compatible OS to run our service on!

Summary
In this chapter, we set up our service in the Windows Azure Developer portal,
prepared our cloud application in Visual Studio for deployment, and manually
deployed our application. To examine Azure's elasticity, we changed the
configuration file, and started our application in the Windows Azure cloud!

Conclusion
We've now reached the end of our exploration of Microsoft's Azure
platform. Together, we've built a simple application making use of many of the
features of Azure. We've explored Azure's Compute and Storage services, SQL
Azure, Access Control, and Service Bus, and we've seen how our existing skills
in .NET and SQL Server can be leveraged on Azure. We have tried to provide a
sufficient overview of all the technologies, but some of these topics deserve entire
books dedicated to them.

Deploying to Windows Azure

[222]

We hope you’ve found the information useful, and you now have a better
understanding of the advantages and challenges presented when developing for
Azure. We are positive that you can now confidently guide the technologies in your
enterprise onto the platform that best serves your business needs and architectures
best. Whether you choose Azure, on-premises, a mix of the two, or some other
platform completely, our goal was to help you make the choice best suited for
your enterprise.

Microsoft considers Azure to be its future, forming the basis for many of its service
offerings, as well as providing the platform to other enterprises. Microsoft is
committed to developing Azure, and there will undoubtedly be an updated version
of this book in the future. There is a wealth of Azure content produced on a daily
basis, found on blogs, Twitter, forums, and the Azure mini-site. The Windows
Azure and SQL Azure teams blog at http://blogs.msdn.com/b/windowsazure/
and http://blogs.msdn.com/b/sqlazure/, and these are the best places to follow
information about the platforms.

Index
Symbols
.NET Services. See App Fabric

A
Access Control

authentication, versus authorization 180
configuration basics 181
configuring, for Jupiter Motors 183
overview 178, 179
requests 182
Sign in with Twitter button 178
SWT 182

Access Control configuration, for Jupiter
Motors

about 183
adding, to web service 194
AddOrderStatusUpdateToQueue function

183
Azure AppFabric Portal, configuring 184,

185
client application, configuring 191
configuration tools 186-188
configuration tools, ACM.exe 186
configuration tools, AcmBrowser 186
GetStatusForOrder function 183
Issuer, configuring 190
LoadStartupData function 183
Rules, configuring 190
scope, configuring 190
Token Policy, creating 188, 189

ACM.EXE tool 181
ACMBROWSE 181
AddOrderStatusUpdateToQueue service

function 153

ALTER DATABASE command 46
Amazon

cloud offering 12
Virtual Private Cloud 12

AppFabric
about 21
using 21

application deployment
preparing 213-215

application diagnostics
about 123-125
blob storage 125
table storage 125

ASP.NET
assembly references 120

ASP.NET developer
considerations 22

Azure
about 12-16
application, diagram 38
Azure Fabric 15
Development Fabric 22
features 37, 38
monthly service charges, calculating 23
Table Storage 93
web role 119

Azure, developing
local machine, configuring 27-31
SDK, installing 31-33
tools, downloading 27
tools, installing 31

Azure account, creating
about 39
steps 39, 40
Table Storage, adding 96

[224]

Azure AppFabric
about 177
examples 178
Service Bus service 177

Azure costs, calculating
AppFabric pricing, calculating 24
SQL Azure pricing, calculating 24
Windows Azure pricing, calculating 23, 24

Azure Diagnostics
collected data, storing 200-202

Azure ecosystem
blobs 77

Azure menu
App Fabric 16
SQL Azure 16
Windows Azure 16

B
BIDS 61
binary large object. See blob
BizTalk Services. See App Fabric
blob

about 18, 77
Create Blob parameter 88
Delete Blob parameter 89
Get Blob Metadata parameter 89
Get Blob parameter 88
Get Blob Properties parameter 89
Lease Blob parameter 90
List Blobs parameter 88
Set Blob Metadata parameter 89
Set Blob Properties parameter 89

BlobRequest.GetBlockList method 91
BlobRequest class 88
blobs, Azure ecosystem

block blobs 77
page blobs 77, 78
storage, creating 78
storing 78

Blob storage
accessing, mechanisms 83
API 84
blobs, working with 88
containers working with, REST Interface

used 85

containers working with, StorageClient
library used 85-87

creating, steps 78-82
REST 84

Blob Storage API
DELETE command 84
GET command 84
HEAD command 84
PUT command 84
using 84

Blob Storage Data Model
about 83
blob 83
blocks 83
container 83

built-in functions, SQL Server
Aggregate 49
Configuration 49
Cursor 49
Date and Time 49
Mathematical 49
Metadata 49
ODBC Date/Time 50
ODBC Numeric 50
ODBC String 50
Ranking 49
Security 49
String 50
System 50
Text/Image 50

Business Intelligence Development Studio.
See BIDS

C
CDN 36
CDN, Windows Azure

about 82
blobs, accessing 82
blobs, caching 83

class functions
CreateDataSetFromDataReader 153
GetOrdersNotComplete 153
GetOrderStatuses 153

Clear() method 116
client application configuration, for Access

Control
steps 191

[225]

Token, requesting for 192, 193
CloudBlob.CreateSnapshot method 90
CloudBlob.SetMetadata method 89
CloudBlob.UploadFile method 88
CloudBlob class 88
CloudBlobClient class 85
CloudBlobContainer.Delete method 87
CloudBlobContainer.FetchAttributes

method 86
CloudBlobContainer.ListBlobs method 88
CloudBlobContainer.SetMetadata method

86
CloudBlobContainer.SetPermissions

method 87
CloudBlobContainer class 85
cloud computing

about 7-9, 13
benefits 9
downsides 10
infrastructure 11, 12

cloud computing, benefits
disaster recovery 9, 10
familiar environment 10
low up-front cost 9
simplified migration 10
storage management 9, 10

cloud computing, downsides
higher cost 11
hosting problem 11
lesser control on application environment

10, 11
CloudQueue class 113
CLR 24
common language runtime. See CLR
config data

logging, in application 206
content delivery network. See CDN
CREATE DATABASE command 65
CREATE LOGIN command 65
Create method 113
CreateTable(<tablename>) method 98

D
DAC Pack 61
data-tier application package. See DAC Pack
database

creating 65-75

database tables
versus Table Storage 93-95

Data Control Language. See DCL
Data Definition Language. See DDL
Data Manipulation Language. See DML
data migration, SQL Azure. See schema

migration, SQL Azure
DataTables, packaging

advantages 156
disadvantages 156

dbmanager, SQL Azure 56
DCL 48
DDL 48
Delete method 113
DeleteObject method 102
DELETE operator 89
DeleteTableIfExist method 99
deployment

running 220, 221
upgrading 219, 220

development considerations
about 54
maximum size, managing 54

Development Fabric 22
diagnostic data

persisting 206-208
transferring 206-208

DiagnosticDataBufferConfiguration class
200

diagnostic logging
configuration location, changing 204-206
enabling 202-204

DML 48
DoesTableExist method 98

E
End User License Agreement. See EULA
enterprise application 7, 8
Enterprise Resource Planning. See ERP
entities, Table Storage

deleting 102
Entity Group Transactions, rules 103
inserting 100
merging 101
naming rules 102
property value, types 102

[226]

querying 100
updating 101
working with 99

ERP 35
ERPService.svc.vb, WCF web service

about 151
AddOrderStatusUpdateToQueue service

function 153
CreateDataSetFromDataReader function

153-155
GetOrdersNotComplete function 153-155
GetOrderStatuses function 153-155
GetOrderStatusForOrder service function

152
LoadStartUpData service function 152

ETW 200
EULA 31
Event Tracing for Windows. See ETW
exception handling

about 104
concurrency conflicts 105
operation, retrying 104
response codes 105
retry 105
table errors 105

F
fully supported T-SQL commands

DCL 48
DDL 48
DML 48

G
GAC 97
Generate Script Wizard. See GSW
GET/HEAD operator 86, 89
GetAll command, acm.exe 188
Get command, acm.exe 188
GetMessage() method 115
GET operator 91
GetOrderStatusForOrder service function

152
Global Assembly Cache. See GAC
Google

cloud offering 12

Google Query Language. See GQL
GQL 12
GSW 58

H
Hello Fabric sample 202
hosted service setup, Windows Azure

about 209, 210
Affinity Group, choosing 212, 213
Identifiers, setting up 211, 212

Huron 20

I
identity providers 179
IERPService.vb file, WCF web service

about 149
ADO.NET datasets, using 151
Data Contract 150
Operation Contract 150
Service Contract 150

include=metadata parameter 111

J
Jupiter ERP database

SQL Azure portal 64, 65
visual look 62, 63

JupiterMotorsERP local application
about 170-172
App.config code, adding 173, 174
designing, requirements 171

Jupiter Motors Web Role
about 126, 127
additional stored procedures 128-142
code 128
portal page, viewing 126, 127

Jupiter Motors web service 145
Jupiter Motors worker role

about 163
building 163-168

K
key

Current Management Key 184
Previous Management Key 184

[227]

L
ListQueues method 112
ListTables method 98
live configuration

changing 218
LoadStartUpData service function 152
local machine configuration

Microsoft Hotfixes, applying 30
registry tool, using 28
steps 27-29
WCF HTTP Activation, enabling 30

loginmanager, SQL Azure 56

M
management tools

about 55
Access 2010 56
Project Houston 55, 56
SQL Azure portal 55
SSMS 2008 R2 55

marker parameter 111
MARS 50
maxresults parameter 111
MERGE method 101
messages, working with

about 114
Delete messages parameter 116
Get messages parameter 115
Peek messages parameter 116
Put messages parameter 115

metadata, queues
adding, REST API used 113
in client library 114
retrieving 114
setting 113

method
BlobRequest.GetBlockList 91
CloudBlob.CreateSnapshot 90
CloudBlob.SetMetadata 89
CloudBlob.UploadFile 88
CloudBlobContainer.Delete 87
CloudBlobContainer.FetchAttributes 86
CloudBlobContainer.ListBlobs 88
CloudBlobContainer.SetMetadata 86
CloudBlobContainer.SetPermissions 87
Create 113

CreateTable(<tablename>) 98
Delete 113
ListTables 98
methodTokenValidator.Validate 195
OnStart() 159
OnStop() 160
Run() 159
SetMetadata 114

Microsoft Azure. See Azure
Microsoft Online Services Customer Portal.

See MOCP
MOCP 40
multiple active result sets. See MARS

O
Object-Relational Mapping. See ORM
OnStart() method 159, 202, 207
OnStop() method 160
ORM 95

P
partially supported T-SQL commands

Create/Alter/Drop Index 49
Create/Alter/Drop Table 49
Create/Alter/Drop Trigger 49
Create/Alter Function 49
Create/Alter View 49

PartitionKey
choosing 103
choosing, Microsoft tips 104

prefix parameter 111
Project Dallas 22
project design

about 35
Azure selection, need for 36
customer portal, components 36
information flow, overview 36

Project Houston, management tools
about 55
advantage 56

PUT operator 91

Q
querystring parameters

numofmessages 115

[228]

visibilitytimeout 115
queues

creating 112
deleting 113
listing 111
metadata, obtaining 114
metadata, setting 113
working with 111

queues, creating
in client library 113
REST API 112, 113
rules 112

queues, deleting
client library, using 113
REST API 113

queues, listing
Client library 112
REST API 111

Queue Storage
about 107, 108
accessing 108
benefits 109
binary data, handling 110
failover 109
invisibility time 110

R
recreational vehicles. See RVs
regedit command 28
Representational State Transfer. See REST
REST 84
Role.OnStart() method 203
Run() method 159
RVs 35

S
SaveChanges method 101, 103
schema migration, SQL Azure

about 57
BCP 62
data, scripting manually 57, 58
objects, scripting manually 57, 58
SQL Azure Migration Wizard 58, 59
SSIS 59

security, SQL Azure
about 53, 54

rules 53
security token service. See STS
Service Bus

about 195
as connection broker 197
as message relay 196
as message relay, advantages 196
as message relay, disadvantages 197

service function
AddOrderStatusUpdateToQueue 152
LoadStartUpData 152

Service Policy 181
SetMetadata method 114
Simple Web Token. See SWT
SQL Azure

about 20
benefits 42
data, migrating 57
databases, managing 56
dbmanager 56
differences 50
loginmanager 56
logins, managing 56
overview 41, 42
pricing, calculating 24
roles, managing 56
schema, migrating 57
security 53
similarities 47

SQL Azure, benefits
familiar development model 46, 47
high availability 42, 45
manageability 42
Relational data model 46
scalability 42, 46

SQL Azure, differences
about 50
database number 51
database objects 51
data synchronization 52, 53
Distributed Transaction Coordinator (DTC)

51
Service Broker 51
SQL Browser 51
system functions 52
T-SQL commands 51, 52

[229]

SQL Azure, managing
about 43
differences 44, 45
high availability 45
similarities 43, 44
steps 43

SQL Azure, similarities
built-in functions 49, 50
database objects 47
fully supported T-SQL commands 48
multiple active result sets 50
partially supported T-SQL commands 49
T-SQL commands support 48

SQL Azure Manager 20
SQL Server Analysis Services. See SSAS
SQL Server Integration Services. See SSIS
SQL Server Management Studio. See SSMS
SQL Server Reporting Services. See SSRS
SSAS 41
SSIS

about 59
DAC Packages 61, 62
packages, creating from scratch 61
SQL Server Import and Export Wizard

59-61
SSMS 20
SSRS 41
storage service, Windows Azure

about 18
Blob Storage 19
Queue Storage 19
Table Storage 19

stored data
accessing 208

STS 179
SWT 182
System.Diagnostics.Trace class 206
System.Net.Sockets.TcpListener class 161

T
tables, Table Storage

creating 98
deleting 99
list, querying 98
naming convention 98
working with 98

Table Storage
accessing 97
adding to Azure account 96
benefits 95
entities, working with 99
limitations 96
tables, accessing 95, 96
use 94
versus database tables 93-95

Table Storage, accessing
about 97
tables, naming convention 98
tables, working with 98
x-ms-version property 97

time-to-live. See TTL
Token Policy 181
TokenValidator.Validate method 195
TokenValidator class 194
trace listener 124
TTL 83

U
UpdateObject method 101
Upgrade domains 219

V
visual representation, container 83

W
Warehouse Management System. See WMS
WCF

about 144
new Web Role, creating 145-149
securing 144

WCF web service
about 149
ERPService.svc.vb 151
IERPService.vb file 149

web role
about 119
and ASP.NET 120
Jupiter Motors Web Role 126, 127
project, creating 121-123
solution, creating 121-123

[230]

web service
adding, to Azure Web Role 144
endpoint 143
endpoint, components 143
host environment 143
Jupiter Motors web service 145
service class 143

Web Service Definition Language. See
WSDL

Windows application
listboxes, populating 169
overview 169
testing 175, 176

Windows Azure. See also Azure
Windows Azure

about 17
AppFabric 21
Azure Fabric Agent 20
Azure Fabric controller 20
CDN 82
cloud project, running 215-217
compute service 17
developing 27
Fabric Controller 17
hosted service, setting up 209, 210
pricing, calculating 23
Queue Storage 107
Service Bus 13

storage service 17, 18
Windows Azure tools, installing

Platform Training Kit, installing 31
SDK, installing 32
steps 33
tools, installing 32

Windows Communication Foundation. See
WCF

Windows Live ID. See WLID
WLID 39
WMS 21
WorkerRole class 165
worker roles

about 159
best practices 162
building 159, 160
facing externally 161
Jupiter Motors worker role 163
managing 161, 162
thread-pool pattern 161
uses 160

WriteLine method 206
WSDL 156, 157

X
x-ms-version, Table Storage 97

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Introduction to Cloud Computing
	What is an enterprise application?
	What is cloud computing?
	Some benefits of cloud computing
	Some downsides of cloud computing
	Cloud computing infrastructure
	Cloudy skies ahead
	Is cloud computing "enterprisey" enough?
	Summary

	Chapter 2: The Nickel Tour of Azure
	Explaining Azure to the managers
	Windows Azure
	Compute service
	Storage service
	Blob Storage
	Table Storage
	Queue Storage

	Azure Fabric Agent and Controller

	SQL Azure
	Windows Azure platform: AppFabric
	Codename Dallas
	Development Fabric
	Considerations for the ASP.NET developer
	How are Azure costs calculated?
	Calculating Windows Azure pricing
	Calculating SQL Azure pricing
	Calculating AppFabric pricing

	Summary

	Chapter 3: Setting Up for Development
	Downloading the tools
	Configuring the local machine for development
	Installing Windows Azure tools and SDK
	Summary

	Chapter 4: Designing Our Sample Application
	Project design
	Integrating application with cloud features
	Creating an Azure account
	Summary

	Chapter 5: Introduction to SQL Azure
	Overview of SQL Azure
	Manageability
	Managing SQL Azure

	High availability
	Scalability
	Relational data model
	Familiar development model
	What's the same in SQL Azure?
	Data types
	Database objects
	Fully supported T-SQL commands
	Partially supported T-SQL commands
	SQL Server built-in functions
	Multiple active result sets

	What's different in SQL Azure?
	Number of databases
	Database objects
	Service Broker, SQL Browser, and DTC
	T-SQL commands
	System functions
	Data synchronization

	Security
	Development considerations
	Managing maximum size

	Management tools
	SQL Azure portal
	SSMS 2008 R2
	Project Houston
	Access 2010

	Managing databases, logins, and roles in SQL Azure
	Migrating schema and data
	Manually scripting objects and data
	SQL Azure Migration Wizard
	SQL Server Integration Services (SSIS)
	SQL Server Import and Export Wizard
	Creating packages from scratch
	DAC Packs

	BCP

	The Jupiter Motor's ERP system database and the Dealer Orders database
	SQL Azure portal

	Creating our database
	Summary

	Chapter 6: Azure Blob Storage
	Blobs in the Azure ecosystem
	Creating Blob Storage
	Windows Azure Content Delivery Network
	Blob Storage Data Model
	Blob Storage
	Representational State Transfer
	The Blob Storage API
	Working with containers using the REST interface
	Working with containers using the StorageClient library
	Working with blobs

	Summary

	Chapter 7: Azure Table Storage
	Table Storage versus database tables
	Some of the good stuff
	Limitations of Table Storage
	Adding Table Storage to an Azure account
	Accessing Table Storage
	Working with tables
	Working with entities
	Entity Group Transactions

	Choosing a PartitionKey
	Exception handling
	Retry on exceptions
	Exceptions on retry
	Concurrency conflicts
	Table errors and HTTP response codes

	Summary

	Chapter 8: Queue Storage
	The ins and outs of queues
	Reasons to use a queue
	Invisibility time and failover
	Special handling for binary data

	Working with queues
	Listing queues
	REST API
	Client library

	Creating queues
	REST API
	Client library

	Deleting queues
	REST API
	Client library

	Setting metadata
	REST API
	Client library

	Getting metadata
	REST API
	Client library

	Working with messages
	Summary

	Chapter 9: Web Role
	The role of the Web
	Web roles, déjà vu, and ASP.NET
	Creating the solution and web role project

	Application diagnostics and logging in the cloud
	Jupiter Motors web role
	How do we get there? Here's our code!
	Additional stored procedures used by the web role

	Summary

	Chapter 10: Web Services and Azure
	Web services and WCF
	Securing WCF
	Jupiter Motors web service
	Creating a new WCF service web role
	Our WCF web services
	ERP service interface—IERPService.vb
	Service Contract
	Operation Contract
	Data Contract
	Using ADO.NET datasets

	ERP service implementation—ERPService.svc.vb
	LoadStartupData service function
	GetOrderStatusForOrder service function
	AddOrderStatusUpdateToQueue service function
	GetOrdersNotComplete, GetOrderStatuses, and CreateDataSetFromDataReader class functions

	DataTable "gotcha"
	Web Service Definition Language (WSDL) "gotcha"
	Summary

	Chapter 11: Worker Roles
	Worker role internals
	Uses of worker roles
	Externally facing worker roles
	Thread-pool pattern

	Managing worker roles
	Best practices

	The Jupiter Motors worker role
	Building the Jupiter Motors worker role

	Summary

	Chapter 12: Local Application for Updates
	Brief overview of the application
	JupiterMotorsERP local application
	Adding App.config code

	Testing our application
	Summary

	Chapter 13: Azure AppFabric
	Introduction to Azure AppFabric
	Access Control
	Authentication versus authorization
	Basics of Access Control configuration
	Requests and Simple Web Tokens
	Configuring Access Control for Jupiter Motors
	Configuring Azure AppFabric Portal
	Configuration tools
	Creating a Token Policy
	Configuring a Scope
	Configuring an Issuer
	Configuring a Rule
	Configuring a client application for Access Control
	Using Access Control in a web service

	Service Bus
	Service Bus as message relay
	Service Bus as connection broker

	Summary

	Chapter 14: Azure Monitoring and Diagnostics
	Azure Diagnostics—under the hood
	Enabling diagnostic logging
	Changing the location of the logging configuration

	Logging config data in our app
	Transferring and persisting diagnostic data
	Accessing stored data
	Summary

	Chapter 15: Deploying to Windows Azure
	Setting up hosted service in Windows Azure
	Setting Hosted Service identifiers
	Affinity Groups—geographically grouping services

	Preparation application for deployment
	Ready for deployment
	Changing live configuration
	Upgrading the deployment
	Running the deployment
	Summary
	Conclusion

	Index

